材料一 行之十年,秦民大说(悦),道不拾遗,山无盗贼,家给人足。民勇于公战,怯于私斗,乡邑大治。 ——《史记·商君列传》(1)材料一记载的是中国历史上的哪次改革?改革的哪项措施激励人们“勇于公战”?这次改革对秦国起到了什么作用?(4分)材料二 孝文帝召见群臣,说:“现在要禁用鲜卑语,统一使用汉语……30岁以下的人和在朝廷做官的人,不得继续使用鲜卑语,明知故犯,就要降职和罢官。” (2)孝文帝为什么要进行改革?材料二中孝文帝提出了什么具体改革措施?这次改革在历史上产生了怎样的影响?(3分)
材料一 宋元时期,是我国古代发展的高峰时期,这一时期的科技,是在隋唐经济高度繁荣基础上的延续。宋朝结束了五代十国以来长期分裂割据和混战的局面。那时经济发展,城市繁荣,航海和对外贸易空前活跃,元朝实现了全国性的统一,中外经济文化交流频繁。两大因素的结合,使宋元文化突飞猛进,涌现出一批著名的科学家和文学家、艺术家,反映了那个时期我国科学技术在世界上的领先地位。——《宋元时期的科技成就》(1)根据材料概括宋元时期科技发展的原因,结合所学指出宋元时期在四大发明方面的成就。 材料二 西方近代科学一经产生,就以其蕴含的思想和方法对社会的各个方面进行了改造,驱动全社会的近代化不断深化。但在中国,尽管在明清之际西方近代科技就已传入,却没有能够产生其在西方社会所发挥的作用。——《论明清之际士人群体对西方科技的态度及历史影响》(2)西方近代科学引发了两次工业革命,分别使人类进入什么时代?结合所学从政治、经济、思想方面指出,明清时期的哪些因素阻碍西方近代科学在中国发挥作用?
材料一 2016年4月24日,“华光礁1号沉船特展”在南京博物院开展,吸引了众多观众前来参观。“华光礁1号”是我国考古工作者在西沙群岛的远海地区发现的第一艘古船.该船是一艘南宋商船,800多年前在航行到西沙华光礁时不幸触礁沉没。——摘编自2016年4月25日人民网材料二 据考证,“华光礁1号”当时是从福建泉州港出发,船货均为南宋外销瓷器,最终在西沙群岛沉没。这意味着,沉船行驶在向西的“海上丝绸之路”航线上,前往东南亚甚至更远的地方。专家认为,“华光礁1号”古沉船遗址及出土文物,记载着古代中国与周边国家友好往来的历史,标志着中国人开创了“全球经济一体化”的先河,促进了世界文明的发展。——摘编自2016年4月25日中国新闻网(1)根据材料写出这艘“商船”原定的航行路线。(2分)当时这艘船使用的先进导航工具应该是什么?(2分)(2)结合图9与相关内容,指出这艘沉船的出土文物主要是什么物品?(1分)请写出这些物品的著名产地之一。(1分)当时政府在港口设立的外贸管理部门是什么?(2分)(3)材料中的“海上丝调之路”最早开辟于哪个朝代?(2分)这条航线的开辟有何重大历史意义?(2分)
上①问侍臣:“创业与守成②孰③难?”房玄龄曰:“草昧④之初,与群雄并起角力而后臣之⑤,创业难矣!”魏征曰:“自古帝王,莫不得之于艰难,失之于安逸,守成难矣!”上曰:“玄龄与吾共取天下,出百死,得一生,故知创业之难,征与吾共安天下,常恐骄奢生于富贵,祸乱生于所忽,故知守成之难,然创业之难,既已往矣⑥;守成之难,方当⑦与诸公⑧慎之。”玄龄等拜曰:“陛下及此言⑨,四海之福也。”
①人人在童年,都是时间的富翁。我有时待在家里闷得慌,就不免要到离家很近的那个街口,去看快手刘变戏法。②快手刘是个摆摊卖糖的大胖汉子。随身背着的绿色小木箱,上面插着一排排廉价的棒糖。他变戏法是为吸引孩子们来买糖。戏法很简单,俗称“小碗扣球”。一块绢子似的黄布铺在地上,两只白瓷小茶碗,四个滴溜溜的大红玻璃球儿。他两手各拿一只茶碗,你明明看见每只碗下边扣着两个红球儿,你连眼皮都没眨一下,只见他一边叫天喊地,东指一下手,西吹一口气,嘿!四个球儿竟然全都跑到一只茶碗下边去了。
(一)江上(5分)【明】孙蕡江上青枫初着花,客帆和月宿蒹葭。云过疏雨数千点,临水小村三四家。风起渔船依钓石,潮回归雁认平沙。秋怀已向南云尽,又是沧洲阅岁华。【注释】①孙蕡(fén):字仲衍,号西庵先生,广东南海人。②沧州:滨水的地方。
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
中国梦是历史的、现实的,也是未来的,中华民族伟大复兴的中国梦终将在一代代青年的接力奋斗中变为现实。阅读下列材料,回答问题。材料一 五月四日下午一时半,十几个学校的学生齐集天安门,人人手里拿着一面或两面白旗,上面写着“还我青岛”“头可断青岛不可失”……第二天,北京各大专学校总罢课……六月三日,北京学生在街头演讲时被北洋政府逮捕一百七十八人……第三天,上街演讲的学生达到五千多人,社会影响加大。学生的爱国行动得到越来越多各界人士的同情和支持……这是真正伟大的历史转折点。——摘编自金冲及着《二十世纪中国史纲》(第一卷)材料二(七七事变后)20岁的张访朋投考了由广西南宁迁到桂林的黄埔第六分校,成为第十六期期的一名学生……,为了锻炼预备军官们的指挥能力,军校里不时进行沙盘作战演习……教官们讲怎么指挥作战,讲得很生动这是张访朋第一次从军官的角度去思考如何作战。——摘编自《我的抗战》节目组著《我的抗战Ⅱ》
16.(10分)报刊是历史的档案,不仅记录了时代的变迁,而且影响了社会发展的进程。阅读下列材料,回答问题。材料一 1898年8月,《万国公报》发表以广学会名义撰写的《速兴新学条例》,提出了多项发展教育的主张。如主张派遣留学,每年由国家从学有所成之士中选100人,资派出洋。又如,主张在每一府所在地和市镇各设学塾、书院,专以西文西学教人。 ——摘编自黄新宪《<万国公报>与中国教育的近代化》材料二 东北自沦陷后,《申报》报道了大量东北义勇军的战斗情况,对他们的战斗成果热情宣扬。1936年底,《申报》对傅作义及其所部在红格尔图和百灵庙战役击溃日伪军的行动进行了连续报道,大大鼓舞了中国军民的士气。随着卢沟桥的枪声响起,《申报》对抗战予以了更多的关注和报道。 ——摘编自盘霄远《抗战全面爆发后<申报>对时局报道态度的研究》
一、说学情高年级的学生已有了一定的自学能力,能通过预习,了解文章大意,但教 ? 师在教学过程中要体现对学生自学能力的检测,在检测过程中进一步提升学生的自学能力。学生有感情地朗读课文是课堂重点训练的目标,在教师的引导下,学生要借助语言训练,初步掌握品读重点词句、感受文字背后情感的能力,继而有感情地朗读课文。?学会简要复述是本单元的重点训练目标。通过前几篇课文的学习,学生已了解了一些复述的方法。但学生在复述课文时往往抓不住重点,复述等同于背诵课文内容;有的在复述过程中条理不清晰,语言不简洁。在教学过程中教师要注意铺设“台阶”,更好地帮助学生清楚、有条理、有重点地复述课文。三、说教学目标:? 1.会认“牺”4等个生字,会写“酬、珍”等11个生字。正确读写“酬谢、叮嘱、崩塌”等词语。? 2.在理解课文内容的基础上,分清事情的前因后果,能复述故事。?3.抓住文中描写人物言行的词句,细心体会海力布热心助人,舍己救人的高贵品质。?四、说教学重难点:1.在理解课文内容的基础上,分清事情的前因后果,能复述故事。?2.抓住文中描写人物言行的词句,细心体会海力布热心助人,舍己救人的高贵品质。
【点津】 1.不定式的复合结构作目的状语 ,当不定式或不定式短语有自己的执行者时,要用不定式的复合结构?即在不定式或不定式短语之前加 for +名词或宾格代词?作状语。He opened the door for the children to come in. 他开门让孩子们进来。目的状语从句与不定式的转换 英语中的目的状语从句,还可以变为不定式或不定式短语作状语,从而使句子在结构上得以简化。可分为两种情况: 1?当目的状语从句中的主语与主句中的主语相同时,可以直接简化为不定式或不定式短语作状语。We'll start early in order that/so that we may arrive in time. →We'll start early in order to/so as to arrive in time. 2?当目的状语从句中的主语与主句中的主语不相同时,要用动词不定式的复合结构作状语。I came early in order that you might read my report before the meeting. →I came early in order for you to read my report before the meeting.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。