新《纲要》指出:教师应成为学习活动的支持者、合作者、引导者。活动中应力求“形成合作式的师幼互动”,因此本活动我除了和幼儿一起准备丰富的活动材料,还挖掘此活动的活动价值,采用适宜的方法组织教学。活动中我运用了1、情景表演法:活动导入部分既要让幼儿发现问题,引出下面一系列的疑问及探索,又要通过幼儿感兴趣的方式设置悬念,因而我设计了小兔出门摔倒这一情节,并通过情景表演的方法启发幼儿思考。2、演示法:是教师通过讲解谈话把教具演示给孩子看,帮助他们获得一定的理解,本活动的演示是运用几何图形的基础上,学会区分异同。此外我还运用了观察法、谈话法等,对于这些方法的运用,我“变”以往教学的传统模式——教师说教,为以幼儿为主体,教师以启发、引导的方式,充分调动幼儿学习的积极性,并以“游戏”贯穿活动始终,让幼儿在玩中获得知识,习得经验,真正体现玩中学,学中乐。
2.教材简析:《学弈》这篇文言文选自《孟子·告子》,通过弈秋教两个人学下围棋的事,说明了做事必须专心致志,决不可三心二意的道理。文章先说弈秋是全国最擅长下围棋的人,然后讲弈秋同时教两个学习态度不同的人下围棋,学习效果截然不同,最后指出这两个人学习结果不同,并不是在智力上有多大差异。文言文是古代文明传承的媒介,虽与现代文在用词造句、朗读上有很大差别,但两者却有着千丝万缕、不可分割的内在联系。
1.知识目标:能正确读写本课要求掌握的生字词;能够正确、有感情地朗读课文;把握文章主要内容,抓住重点语句,品味重要词句所包含的思想感情。2.技能目标:通过研读课文第______段,培养学生敢于质疑,解决问题、收集处理信息的能力及初步学会探究性的学习方式。3.情感目标:通过有感情朗读课文,感受。培养喜爱。引导学生从现实的生活经历与体验出发。为了落实本课时的教学目标,我把第课时的教学重难点确定为:紧扣课文语言文字,抓住关键词,着重体会,由于(本课的一些特点),我将本课的教学重点确定为:因为(学生的一些实际),我将本课的教学难点确定为:
二、说教学目标(Teachingobjectives)根据本教材的结构和内容分析,结合着年级学生的认知特点和心理特征,我制定了以下的教学目标:知识目标:能听、说、读短语及单词:……能运用……等进行口语交际。能力目标:能用英语交流……。情感目标:通过活动、游戏使学生产生学习英语的兴趣;让学生敢于、乐于开口,积极参与交流;并在学习的过程中,培养学生的合作意识和竞争意识
一. 教材分析我根据新课标内容,确定《XXXXXX》一课属于“————”学习领域,即通过看看、画画、做做等方法表现所见所闻、所感所想的事物,激发学生丰富的想象力与创造愿望。二、学情分析小学生是想象力与创造力非常丰富和活跃的时期,小学阶段学生已经认识了美术工具和材料,对不同的材料和工具的使用已有一定的掌握,会用线条和色块来表现他们所知道的东西。他们以自我为中心,喜欢按照自己的想法自由的表现画面;好奇心重,爱表现自己,但动手能力较差,只能用简单的工具和绘画材料来稚拙地表现自己的想法。这是学习本课的有利因素,结合小学生的学龄特点,使学生提高对美的感受能力和艺术创造能力,让他们在轻松愉悦的氛围中无拘无束地表现自己的想法,符合学生发展的特点
(1)学生朗读队长让大家休息的句子,明白大家放下奶酪,却不走开的原因是因为大家都惦记这“奶酪渣”。(2)学生朗读队长让大家到草丛中休息的句子,揣摩队长的心意:他想干什么?预设:队长想吃掉“奶酪渣”,又不想让大家说他违反纪律。
独学:读课文第一自然段,说一说,露西为什么想给爸爸写信?爸爸出国了,要过半年才能回来。今天,露西想给爸爸写一封信。以此让学生体会露西对爸爸的思念之情。
2、教学目标<1>知识与能力目标:(1)让学生画出一次函数的图象,并结合图象发现它们的性质。(2)尝试没有给出图像,利用一次函数的性质对量变到质变的变化规律进行初步预测。<2>.过程与方法目标:(1)通过一次函数的图象和性质的探究,培养学生的观察、比较、类比、联想、分析、归纳、概括的逻辑思维能力以及培养学生的动手实践能力。
尊敬的各位评委、各位老师,大家好,今天我说课的内容是《万里一线牵》。下面我将从“说教材”、“说学情”、“说教法”、“说程序”、“说板书”五个方面对本课进行具体研说,恳请大家批评指正。一、依标扣本,说教材《万里一线牵》是部编版《道德与法治》三年级下册第四单元《多样的交通和通信》的第三个主题中的内容。这个主题主要是了解多样便捷的现代通信方式;通过古今通信方式的对比,感受通信发展给人们带来的便利。本课教学通过帮助学生运用已有的生活经验和调查资料相对比,通过对知识的探究发现问题,从而使学生对现代通信方式的发展有初步了解,知道多种多样的现代通信方式,以及通信方式的发展给人们生活带来的便利。 二、以人为本,说学情对于现代通信方式,小学生使用的已经很广泛了,但是小学生真正运用现代通信方式解决生活问题的经验不足、缺乏体验,对本知识点的了解很少。因此,依据学生的生活实际和本课的教学目标,我以学生的生活实际为起点,利用课程资源,使教学与学生生活贴得更近,让学生更好的感受现代通信的迅猛发展,以及给生活带来的无限便捷,体验通信愉悦,并在以后的生活中学会合理运用通信方式解决实际问题,更好地服务于当下和未来的生活。
学生在朗读同时也在接受美的熏陶。在教学中,我始终重视让“趣”字贯穿整个教学过程,在读读、想想、说说中感受美,培养想象力并进行朗读训练。
二、活动目标根据以上的分析和思考及大班幼儿的年龄特点,我从认知、情感、能力三方面来制定这次活动的目标。1、在观察、探索中了解彩虹现象的由来。2、尝试用多种方法制造“彩虹”,产生对自然界奇妙现象的兴趣。3、愿意与同伴交流,分享探索的过程。4、根据目标:我的活动重点是在观察、探索中了解彩虹现象的由来。活动难点是尝试用多种方法制造“彩虹”,产生对自然界奇妙现象的兴趣。三、活动准备为了使活动呈现出趣味性、综合性,寓教育于生活情境中、游戏中,我做了以下的准备:1、选择一个明媚的日子。2、课件一份,镜子人手一份,盆中装满水,圆珠笔,色拉油,白纸,三棱镜,放大镜,泡泡。四、活动过程根据幼儿的年龄特点,我设计了以下五个环节:引起幼儿的兴趣——迁移经验,了解彩虹的由来——学习动手制造“彩虹”——交流实验结果——延伸活动。我是让孩子们在操作探索中亲身体验,了解彩虹现象的由来,克服重点和难点。具体过程如下:(一)引起幼儿的兴趣。我通过以下三个小环节来实施:1、幼儿自由玩镜子。幼儿在玩中和同伴说说从水中的镜子中找到了什么?2、引导幼儿在水中把镜子对着太阳照射。3、说说自己的发现。数一数有几种颜色?它们是怎么排列的?我开始的直接提问是让孩子们拿着镜子在水中自由玩耍,讨论自己的发现,幼儿讨论的问题肯定不充分,之后我用语言提示他们“在水中把镜子对着太阳照一照”,这样有目的的引导,让他们自己去发现“彩虹”这一奇妙的自然现象:镜子中能反射出七彩的颜色。(二)了解彩虹的由来。这一环节我出示雨中、雨后的课件制作,让幼儿观看课件彩虹是怎么产生的,最后得出结论:彩虹是夏天雷雨过后出现的自然现象,是天空中飘着许多的小水滴经过阳光照射后形成的,彩虹是红、橙、黄、绿、青、蓝、紫这样排列的。屏幕上雨后的课件鲜艳的颜色刺激着小朋友的感官,使他们的手、脑、眼、嘴并用,每个孩子都能全身心的融入学习中。(三)学习动手制造“彩虹”。前一环节的介绍,幼儿对“彩虹”的由来产生了浓厚的兴趣,教师可以这样引导“这么漂亮的彩虹一会就没有了,怎么办呢?”我直接把问题抛给幼儿,让他们想办法解决,孩子们肯定会说:“我们可以自己做一条‘彩虹’呀?那怎么制造‘彩虹’呢?”带着这个问题,让孩子们自己寻找材料,如:泡泡、放大镜、三棱镜、圆珠笔、白纸……幼儿自由地尝试用多种方法制造“彩虹”,教师用问题设置的方法边观察幼儿操作,边及时地提出问题进行引导,幼儿在尝试操作过程中交流、合作。本环节是运用了尝试法和操作法,也是活动的难点之处。
2、目标定位:根据大班幼儿年龄特点及实际情况以及布鲁纳的《教育目标分类学》为依据,确立了认知、能力、情感等方面的目标,融合了语言、科学、社会、艺术领域的整合。目标为:(1)通过各种方法引导幼儿发现自己的成长与变化。(2)激发幼儿欣赏自己的成长,展示自己的能力,树立自信心。(3)乐于与同伴交流、分享自己成长的快乐。(4)让幼儿尝试制作个人成长册,发展幼儿的精细动作。(5)让幼儿体会父母的辛苦、关心,增进亲子之情。根据目标,我把活动重点定位于:感受“我长大了”,主要是发现自己成长与变化。通过观察、比较小时候的照片和用品、播放录像、交流分享、展示自己,使活动得到深化。活动的难点是:根据人的成长过程进行排序、制作个人成长册,主要是通过自主操作,在动手的过程中培养手部肌肉的灵活性和提高排序的能力,对自己的成长充满了期待。在目标定位上,树立了目标的整合观、科学观、系统观,各领域内容有机联系,相互渗透,注重综合性、趣味性、活动性,寓教育于生活、游戏中。因此,我作了以下活动准备:(1)空间准备:幼儿小时候的照片、衣物、用品布置于墙上,桌椅呈同字型便于评价和集中。(2)物质准备:“人的成长过程”图片,卡片纸、彩笔、彩纸、剪刀、胶水等美工材料与工具若干,已制作本领树的树干,小时候的录像(或小中班在园的录像),胎儿的生长发育以及新生儿的养育的录像。(3)知识准备:幼儿向家长了解爸爸妈妈的故事及自己小时候的趣事,观察各个阶段自己成长的照片,熟悉人物主要特征。
一、说教材: 本课是部编《道德与法治》三年级上册第一单元“快乐学习”中的第三课,本课作为本单元最后一课,在前两课“明确学习的意义” 、“体验学习的快乐”的基础上,重点培养学生“掌握学习的方法”,与本单元的前两课是递进关系,符合学生的认知与学习规律。本课针对培养学生养成良好学习习惯,掌握合适的学习方法 而设置 ,共设计了四个话题,“人人都能学得好”“多在心中画 问号”“我和时间交朋友”“好经验共分享” ,四个话题各有侧重,话题之间没有逻辑上的紧密联系,可根据需要进行灵活地调整与重组,现将第一、第二、第四个话题在第一课时完成,重点帮助学生树立学习信心,掌握有效学习方法,第三个话题在第二课时完成,帮助学生了解合理安排时间的好处以及方法,养成良好学习习惯。
本节课开始时,首先由一个要在一块长方形木板上截出两块面积不等的正方形,引导学生得出两个二次根式求和的运算。从而提出问题:如何进行二次根式的加减运算?这样通过问题指向本课研究的重点,激发学生的学习兴趣和强烈的求知欲望。本节课是二次根式加减法,目的是探索二次根式加减法运算法则,在设计本课时教案时,着重从以下几点考虑:1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则。2.四人小组探索、发现、解决问题,培养学生用数学方法解决实际问题的能力。3.对法则的教学与整式的加减比较学习。在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣。
方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.
内容:情景1:多媒体展示:提出问题:从二教楼到综合楼怎样走最近?情景2:如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?意图:通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情.效果:从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础.第二环节:合作探究内容:学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分线定义).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代换).又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴DF∥BE(内错角相等,两直线平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分线定义),∠ADE=∠1(等量代换).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形内角和为180°及等量代换),即∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行).方法总结:解此类题应首先结合图形猜测结论,然后证明.证明两条直线平行,一般先找它们的截线,再求同位角相等(或内错角相等,同旁内角互补)来说明两直线平行.若没有公共截线,则需作出两直线的截线辅助证明.三、板书设计平行线,的判定)判定公理:同位角相等,两直线平行判定定理内错角相等,两直线平行同旁内角互补,两直线平行本节课通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式.
方法总结:题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.探究点二:利用勾股定理求面积如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中△ABE的面积为________,阴影部分的面积为________.解析:因为AE=BE,所以S△ABE=12AE·BE=12AE2.又因为AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因为AC2+BC2=AB2,所以阴影部分的面积为14AB2+14AB2=12AB2=12×32=92.故填94、92.方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.
证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)活动目的:让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明第2小题中,要引导学生找到一个过渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等关系的传递性得出∠1>∠2。
解析:图中∠AOB、∠COD均与∠BOC互余,根据角的和、差关系,可求得∠AOB与∠COD的度数.通过计算发现∠AOB=∠COD,于是可以归纳∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可发现:∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法总结:检验数学结论具体经历的过程是:观察、度量、实验→猜想归纳→结论→推理→正确结论.三、板书设计为什么,要证明)推理的意义:数学结论必须经过严格的论证检验数学结论的常用方法实验验证举出反例推理证明经历观察、验证、归纳等过程,使学生对由这些方法得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识,了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。