第一步,要对市场进行调研与预测。调研时营销的决策和基础,没有调研就没有发言权,就不能掌握市场的真正动态。在调研的同时一定要具有系统性,客观性,不能带有主观偏见,不能简单的以点带面,以局部概括整体。这样就会影响我们做出科学的结论,进而影响营销决策,对调研的结果一定要重视,如果不重视,那么调研毫无疑义。 第二步,市场定向与成功营销,找准产品的目标市场。即产品所面对的是哪些顾客群,是通用型的还是针对某一特殊阶层,这样有利于对产品广告设计和宣传,进而有利于产品的成功营销。
生命是惟一的,宝贵的,世界因为有了生命而变得精彩。生活中交通安全与我们的关系是非常密切的,它就像我们的朋友。日日夜夜都守在我们的身边,教育我们。 遵守交通规则人人皆知,可偏偏有一部分人充耳不闻,视而不见。把遵守交通规则当成耳旁风,从而导致一起又一起的交通事故带走了许多人的生命,让人们认识到了交通事故的可怕。就拿最近发生的一起交通事故来说吧,他们几个都是风华正茂的青少年,由于他们不遵守交通规则,一刹那间,死神就夺走了他们的生命,酿成了血的教训。
其次,医疗卫生服务行业是一个特殊的行业.它是由许许多多"零件"所构建成的一个与人的生命息息相关的整体.不论哪个"零件"出了毛病,都有可能让病人付出宝贵的生命作为代价.我们医务人员每一个人就是那一个个的"零件".每个医务人员,不论你是医生、护士、医技人员或是护工,都是医院这个整体的重要一部分.正是我们每个同事的共同配合,团结协作,这个集体才能够正常的运转,才能很好地履行为人民健康服务的承诺. 随着人类科学技术水平的不断发民,作为现代科学重要组成部分的医学科学也有了极大的进展.新知识、新观点、新仪器等等层出不穷,都在对我们的工作发出挑战和新的要求.而单凭学校所学到的知识,是无法跟上时代进步的脚步的了.就就要求我们接受继续教育,严谨求实,奋发进取,钻研医术,精益求精.只有不断的更新自己的知识水平,才能更好地完成自己的本职工作.
由于题目较简单,所以学生分析解答时很有信心,且正确率也比较高,同时也进一步体会到了借助“线段图”分析行程问题的优越性.六、归纳总结:活动内容:学生归纳总结本节课所学知识:1.会借线段图分析行程问题.2.各种行程问题中的规律及等量关系.同向追及问题:①同时不同地——甲路程+路程差=乙路程; 甲时间=乙时间.②同地不同时——甲时间+时间差=乙时间; 甲路程=乙路程.相向的相遇问题:甲路程+乙路程=总路程; 甲时间=乙时间.目的:强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.
解:(1)设x分钟后两人第一次相遇,由题意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:两人一共跑了5圈.(2)设x分钟后两人第一次相遇,由题意,得360x+240x=400.解得x=23(分钟)=40(秒).答:40秒后两人第一次相遇.方法总结:环形问题中的相等关系:两个人同地背向而行:相遇问题(首次相遇),甲的行程+乙的行程=一圈周长;两个人同地同向而行:追及问题(首次追上),甲的行程-乙的行程=一圈周长.三、板书设计追赶小明→行程问题→相遇问题追及问题环形问题教学过程中,通过对开放性问题的探讨与交流,体验生活中数学的应用与价值,感受数学与人类生活的密切联系,激发学生学习数学的兴趣,培养学生的创新意识、团队精神和克服困难的勇气.
第一环节:歌曲引题,了解哄骗活动开始,我带领幼儿随音乐《小兔子乖乖》进入教室。中班幼儿对歌曲及故事比较熟悉,音乐唤起了幼儿对故事的回忆,激发了幼儿的兴趣。我接着提问:这首大家都熟悉的《小兔乖乖》,讲了一个什么故事呢?小兔子开门了吗?小兔子是怎么知道大灰狼不是妈妈的?通过提问,幼儿明晰了大灰狼利用“哄骗”的方法取得小兔子的信任,达到吃掉小兔子的目的,使幼儿理解“哄骗”的含义。接着提出一个假设问题:如果你一个人在家,有人来敲门,你会怎么做呢?引导幼儿联系实际思考判断。并追问:是所有人敲门都不开吗?进一步引导幼儿判别自己的亲朋友好友等熟悉的人会开门,不认识的人就不开门。为什么不给陌生人开门?我及时进行小结:陌生人可能是坏人,我们不能轻易相信。引导幼儿在讨论中建立“陌生人”的概念,初步树立“不轻信陌生人”的意识。
1、强化德育队伍建设。不断增强教职工德育意识,努力提高德育理论水平和德育技能,以班主任、生活教官队伍为龙头,健全班委会、学生会、团支部队伍,积极推行课任老师德育工作学科浸透,以各类德育活动为载体,全面张开德育工作。 2、提高学生道德评价水平。学生中的犯错误现象比较普遍、犯错误后又不愿接受教育,其根本原因是在于学生心目中的是非观、善恶观、美丑观不准确。因此本学期德育工作之首便是着眼于逐步形成准确的道德评价标准。通过讲座、演讲、征文、辩论会、典型引路等各种方式提升学生道德认知水准,树立健康向上的世界观、人生观,这是学生改正错误、加快进步的源动力、内驱力。
第一条、劳动合同期限:1、本劳动合同为(选择其中一项并填写完整):A.有固定期限劳动合同:年月日至年月日;B.无固定期限劳动合同,自年月日起。C.以完成工作为期限。2、本合同包含个月的试用期(自年月日至年月日)第二条、工作地点:省(自治区、直辖市)市(县)路号.第三条、工作内容:1、乙方同意在甲方部门(或岗位)担任职务,乙方具体工作内容按照甲方的岗位职责要求执行。
二、教学目标:1、抓住文眼“军神”,理解描写人物神态、情绪变化的句子,体会刘伯承坚强的意志。 2、用比较快速的速度默读课文,培养良好的阅读习惯。 3、用自己的话赞一赞军神,抒发自己的个性情感。 这三个教学目标是根据教材内容,新课程标准、课后的思考练习题,学生的实际确定的,这三个目标体现了新课程标准下的三个维度即知识、能力、情感。确立好教学目标,使整个课堂教学教有方向,学生学有目的。 三、教学重难点:有感情地朗读课文,抓住描写人物神态、情绪变化的句子,体会刘伯承的坚强的意志。 确立好一堂课的教学重难点就是抓住了一堂课的“核心”使一堂课的教学内容有凝聚点,重点突出。 四、教学方法 重点词句品读法以读代讲法自主探究法情景渲染法 方法是打开知识大门的钥匙,在整个教学过程中,我充分而又恰到好处的运用了多种教学方法,这在教学过程中有充分的体现。
2、利用已有知识,引导学生自主探索求积、商近似值的方法。在学生想出6.7美元折成人民币时要用乘法计算时,引导学生独立计算得出结果后发现问题并尝试独立解决。使学生认识到积的近似值可以用四舍五入的方法求近似值。接着出示第二个情境“妈妈用600元人民币到银行可兑换多少美元?”由学生独立完成,在学生交流的基础上进一步总结求积、商的近似值的方法:积取近似值是先精确计算,在根据题目的要求取近似值;商取近似值是直接根据要求多除一位,然后取近似值。3、巩固练习在学生初步掌握求积、商的近似值的方法后,我安排了教材67页的试一试,让学生体会如何按要求取近似值;教材68页的练一练,涉及到了多个国家的货币与人民币的兑换使学生进一步感受到数学与日常生活的密切联系
一、学校基本情况 **小学位于北塔区**洲办事处磨石社区,毗邻217省道,地理位置优越,交通便利,是一所省级合格学校。学校创办于1998年9月,由原资洲小学、新农小学、胜利小学三校合一改建而成。我校占地面积约15210平方米,建筑面积5550平方米,生均2.25平方米,绿化面积3160平方米。按照办学条件标准化要求,学校建成了仪器室、图书室、音乐室、心理咨询室、体育器材室、计算机室、多媒体教室等。学校现有48个教学班,在编教师104人,学历全部达标,专业结构配置基本合理。在校学生2442名,入学率、巩固率、普及率均达100%。校园布局合理,功能区划分清晰。
3、会运用已有的经验解答问题,体验一问一答的乐趣。活动准备:1、认知准备:了解动画片《聪明的一休》及一休的提问;认识“?”符号。2、物质准备:布置科学宫场景(动脑筋爷爷画像,有关动物、植物、自然现象等科学图片、卡片、图书、实物,地球仪、小实验操作用具,及时贴问号符号,小问号娃娃胸饰);有关神秘的地球录像资料,《聪明的一休》音乐磁带、录音机、白磁带。活动过程:一、激发求知兴趣,争当小问号娃娃1、介绍动脑筋爷爷和科学宫。小朋友看,这里是科学官,动脑筋爷爷是最有学问的人了,今天,他要请我们大班的小朋友到科学宫来玩,你们高兴吗?动脑筋爷爷说来这里玩的小朋友发现不懂的总会提出许多的问题,你们如果发现有不懂的该怎么办呢?2、 幼儿争当小问号娃娃,自己佩带小问号胸饰。动脑筋爷爷叫爱提问题的小朋友是小问号,你们谁愿意当小问号?以前,总是老师提问题,今天,是小问号来提问题了。请你们赶快戴上小问号娃娃的标志,自己去看一看,你有什么问题。
活动过程: 一、教师边讲故事边操作磁铁动物玩具,引起幼儿对活动的探究兴趣。 1.师:今天大二班来了两位小客人,它们是……?(小兔子和大老虎)它们俩发生了什么事呢? 2.放录音,教师操作表演动物玩具老虎追兔子,幼儿聆听观看。 3.提问:师:小兔子被老虎追上了吗? 幼:没有追上。 师:老虎为什么追不上小兔子呢? 幼A:因为小兔子跑的快。 幼B:老虎没用呀! 师:这里可藏着一个小秘密呢?有谁发现了吗? 幼A:我发现小兔子自己会跑的。 幼B:老虎追小兔子逃,老虎不跑小兔也不跑了。 幼C:老虎和小兔下有东西。幼D:对,好象是磁铁,上次我在黑板上玩时也有过这样的。 师:好,现在就让我们来研究一下,看一看小兔和老虎到底是用什么做的? (评析:教师首先设置悬念,让幼儿把注意力集中到了两个玩具身上。通过视听活动,以及教师诱导式的提问,使幼儿对活动中的磁铁玩具产生了极大的探究兴趣。) 二、探索磁铁玩具小兔和老虎的结构。 1、用视频仪向幼儿展示玩具的结构。请一幼儿拆开玩具拿到视频下展示。 2、提问:师:你发现了什么? 幼A:有磁铁。 幼B:还有橡皮泥呢! 师:这个玩具是怎么做成的呢? 幼A:把一张动物卡片,插在橡皮泥上,然后把泥嵌在磁铁的洞洞里。 幼B:先放泥到磁铁,再插上动物卡。 师:到底用什么方法最好,让我们来自己动手试一试,做一做吧!(评析:视频展示玩具,让幼儿亲眼看到了玩具的结构,探索到了制作的方法,这是幼儿的一次自主活动。他们对老师的玩具十分好奇,很想马上知道是怎么做的。所以在这一环节中幼儿的积极性很高,探求知识的欲望十分强烈。 三、幼儿大胆操作探索制作磁铁玩具。 1、师:老师已经给你们准备好了制作需要的材料,小朋友可以自己动手做两个玩具,做好后可以玩一玩两个动物你追我逃的游戏。2、幼儿动手操作,教师巡回观察和适当指导幼儿制作,鼓励幼儿遇到困难自己想办法解决。 师:动动脑筋,想想办法,怎样才能用一只手操作,让两个动物一个追一个逃?(评析:整个环节满足了幼儿好动的欲望,幼儿通过自己的尝试、探索制作出了属于自己的玩具。锻炼了幼儿的动手能力。但幼儿由于对磁铁的相斥特性不了解,好多人出现了困难。但是,只有当困难来临时,才能鼓励他们大胆提出疑惑,让幼儿继续深入探索磁铁的秘密。)
五、工作职责: 1、领导小组人员职责: (1)与有关部门签订好协议,并督促其严格执行协议条款; (2) 全面关注师生的安全; (3)预先排查安全隐患; (4)及时处理偶发事件。 2、后勤人员职责: (1)为本次活动做好后勤服务工作; (2)严格按照《中小学幼儿园安全管理办法》规定执行,安排好合理的行走路线,确定适合的活动项目。 3、保卫人员职责: (1)统一着装,佩戴警棍等安全设备,全面负责本次活动的安全工作;
1.加强预防。增强忧患意识,高度重视公共安全工作,坚持预防与应急相结合,常态与非常态相结合,做好应对新型冠状病毒感染者的思想准备、预案准备、组织准备以及物资准备等。 2.快速反应。新型冠状病毒感染事件应急处置的各环节都要坚持效率原则,建立健全快速反应机制,及时获取充分而准确的信息,跟踪研判,果断决策,迅速处置,最大程度地减少危害和影响
一)建(构)筑物达到当地抗震设防要求的,可引导就诊人员就近躲避在避险缓冲区、内承重墙的墙根、墙角以及桌椅、病床下面和坚固物体旁边。 (二)建(构)筑物未达到当地抗震设防要求的可按下列方法引导避险: 1.引导所处位置不超过二层且能行动的人员迅速撤离到室外安全地方;视具体情况帮助所处位置不超过二层且具有限行动能力的人员撤离到室外安全地方; 2.引导帮助所处位置超过二层和不能迅速撤离到室外安全地方的人员,就近躲避在避险缓冲区、内承重墙的墙根、墙角以及桌椅、病床和坚固物体旁边。
一、教学目标(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.(三)学科渗透点通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.二、教材分析1.重点:抛物线的定义和标准方程.2.难点:抛物线的标准方程的推导.三、活动设计提问、回顾、实验、讲解、板演、归纳表格.四、教学过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.首先,利用篮球和排球的运动轨迹给出抛物线的实际意义,再利用太阳灶和抛物线型的桥说明抛物线的实际用途。
教学目的:理解并熟练掌握正态分布的密度函数、分布函数、数字特征及线性性质。教学重点:正态分布的密度函数和分布函数。教学难点:正态分布密度曲线的特征及正态分布的线性性质。教学学时:2学时教学过程:第四章 正态分布§4.1 正态分布的概率密度与分布函数在讨论正态分布之前,我们先计算积分。首先计算。因为(利用极坐标计算)所以。记,则利用定积分的换元法有因为,所以它可以作为某个连续随机变量的概率密度函数。定义 如果连续随机变量的概率密度为则称随机变量服从正态分布,记作,其中是正态分布的参数。正态分布也称为高斯(Gauss)分布。
教学准备 1. 教学目标 知识与技能掌握双曲线的定义,掌握双曲线的四种标准方程形式及其对应的焦点、准线.过程与方法掌握对双曲线标准方程的推导,进一步理解求曲线方程的方法——坐标法.通过本节课的学习,提高学生观察、类比、分析和概括的能力.情感、态度与价值观通过本节的学习,体验研究解析几何的基本思想,感受圆锥曲线在刻画现实和解决实际问题中的作用,进一步体会数形结合的思想.2. 教学重点/难点 教学重点双曲线的定义及焦点及双曲线标准方程.教学难点在推导双曲线标准方程的过程中,如何选择适当的坐标系. 3. 教学用具 多媒体4. 标签
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 8.4 圆(二) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内直线与圆的位置关系有三种(如图8-21): (1)相离:无交点; (2)相切:仅有一个交点; (3)相交:有两个交点. 并且知道,直线与圆的位置关系,可以由圆心到直线的距离d与半径r的关系来判别(如图8-22): (1):直线与圆相离; (2):直线与圆相切; (3):直线与圆相交. 介绍 讲解 说明 质疑 引导 分析 了解 思考 思考 带领 学生 分析 启发 学生思考 0 15*动脑思考 探索新知 【新知识】 设圆的标准方程为 , 则圆心C(a,b)到直线的距离为 . 比较d与r的大小,就可以判断直线与圆的位置关系. 讲解 说明 引领 分析 思考 理解 带领 学生 分析 30*巩固知识 典型例题 【知识巩固】 例6 判断下列各直线与圆的位置关系: ⑴直线, 圆; ⑵直线,圆. 解 ⑴ 由方程知,圆C的半径,圆心为. 圆心C到直线的距离为 , 由于,故直线与圆相交. ⑵ 将方程化成圆的标准方程,得 . 因此,圆心为,半径.圆心C到直线的距离为 , 即由于,所以直线与圆相交. 【想一想】 你是否可以找到判断直线与圆的位置关系的其他方法? *例7 过点作圆的切线,试求切线方程. 分析 求切线方程的关键是求出切线的斜率.可以利用原点到切线的距离等于半径的条件来确定. 解 设所求切线的斜率为,则切线方程为 , 即 . 圆的标准方程为 , 所以圆心,半径. 图8-23 圆心到切线的距离为 , 由于圆心到切线的距离与半径相等,所以 , 解得 . 故所求切线方程(如图8-23)为 , 即 或. 说明 例题7中所使用的方法是待定系数法,在利用代数方法研究几何问题中有着广泛的应用. 【想一想】 能否利用“切线垂直于过切点的半径”的几何性质求出切线方程? 说明 强调 引领 讲解 说明 引领 讲解 说明 观察 思考 主动 求解 思考 主动 求解 通过例题进一步领会 注意 观察 学生 是否 理解 知识 点 50
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。