第一节通过研究集合中元素的特点研究了元素与集合之间的关系及集合的表示方法,而本节重点通过研究元素得到两个集合之间的关系,尤其学生学完两个集合之间的关系后,一定让学生明确元素与集合、集合与集合之间的区别。课程目标1. 了解集合之间包含与相等的含义,能识别给定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 图表达集合间的关系,体会直观图示对理解抽象概念的作用。数学学科素养1.数学抽象:子集和空集含义的理解;2.逻辑推理:子集、真子集、空集之间的联系与区别;3.数学运算:由集合间的关系求参数的范围,常见包含一元二次方程及其不等式和不等式组;4.数据分析:通过集合关系列不等式组, 此过程中重点关注端点是否含“=”及 问题;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。
它位于三角函数与数学变换的结合点上,能较好反应三角函数及变换之间的内在联系和相互转换,本节课内容的地位体现在它的基础性上。作用体现在它的工具性上。前面学生已经掌握了两角和与差的正弦、余弦、正切公式以及二倍角公式,并能通过这些公式进行求值、化简、证明,虽然学生已经具备了一定的推理、运算能力,但在数学的应用意识与应用能力方面尚需进一步培养.课程目标1.能用二倍角公式推导出半角公式,体会三角恒等变换的基本思想方法,以及进行简单的应用. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法. 3.能利用三角恒等变换的技巧进行三角函数式的化简、求值以及证明,进而进行简单的应用. 数学学科素养1.逻辑推理: 三角恒等式的证明; 2.数据分析:三角函数式的化简; 3.数学运算:三角函数式的求值.
(4)“不论m取何实数,方程x2+2x-m=0都有实数根”是全称量词命题,其否定为“存在实数m0,使得方程x2+2x-m0=0没有实数根”,它是真命题.解题技巧:(含有一个量词的命题的否定方法)(1)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称量词命题还是存在量词命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.(2)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.跟踪训练三3.写出下列命题的否定,并判断其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一个实数x,使x3+1=0.【答案】见解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命题.
本节通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.了解二分法的原理及其适用条件.2.掌握二分法的实施步骤.3.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.数学学科素养1.数学抽象:二分法的概念;2.逻辑推理:用二分法求函数零点近似值的步骤;3.数学运算:求函数零点近似值;4.数学建模:通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用.
本节内容是学生学习了任意角和弧度制,任意角的三角函数后,安排的一节继续深入学习内容,是求三角函数值、化简三角函数式、证明三角恒等式的基本工具,是整个三角函数知识的基础,在教材中起承上启下的作用。同时,它体现的数学思想与方法在整个中学数学学习中起重要作用。课程目标1.理解并掌握同角三角函数基本关系式的推导及应用.2.会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.数学学科素养1.数学抽象:理解同角三角函数基本关系式;2.逻辑推理: “sin α±cos α”同“sin αcos α”间的关系;3.数学运算:利用同角三角函数的基本关系式进行化简、求值与恒等式证明重点:理解并掌握同角三角函数基本关系式的推导及应用; 难点:会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.
《数学1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本节课要求学生根据具体的函数图象能够借助计算机或信息技术工具计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法,从中体会函数与方程之间的联系;它既是本册书中的重点内容,又是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位.发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。课程目标 学科素养1.通过具体实例理解二分法的概念及其使用条件.2.了解二分法是求方程近似解的常用方法,能借助计算器用二分法求方程的近似解.3.会用二分法求一个函数在给定区间内的零点,从而求得方程的近似解. a.数学抽象:二分法的概念;b.逻辑推理:运用二分法求近似解的原理;
本节课是三角函数的继续,三角函数包含正弦函数、余弦函数、正切函数.而本课内容是正切函数的性质与图像.首先根据单位圆中正切函数的定义探究其图像,然后通过图像研究正切函数的性质. 课程目标1、掌握利用单位圆中正切函数定义得到图象的方法;2、能够利用正切函数图象准确归纳其性质并能简单地应用.数学学科素养1.数学抽象:借助单位圆理解正切函数的图像; 2.逻辑推理: 求正切函数的单调区间;3.数学运算:利用性质求周期、比较大小及判断奇偶性.4.直观想象:正切函数的图像; 5.数学建模:让学生借助数形结合的思想,通过图像探究正切函数的性质. 重点:能够利用正切函数图象准确归纳其性质并能简单地应用; 难点:掌握利用单位圆中正切函数定义得到其图象.
由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系. 数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念; 2.逻辑推理:正弦曲线与余弦曲线的联系; 3.直观想象:正弦函数余弦函数的图像; 4.数学运算:五点作图; 5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.
本节课是正弦函数、余弦函数图像的继续,本课是正弦曲线、余弦曲线这两种曲线的特点得出正弦函数、余弦函数的性质. 课程目标1.了解周期函数与最小正周期的意义;2.了解三角函数的周期性和奇偶性;3.会利用周期性定义和诱导公式求简单三角函数的周期;4.借助图象直观理解正、余弦函数在[0,2π]上的性质(单调性、最值、图象与x轴的交点等);5.能利用性质解决一些简单问题. 数学学科素养1.数学抽象:理解周期函数、周期、最小正周期等的含义; 2.逻辑推理: 求正弦、余弦形函数的单调区间;3.数学运算:利用性质求周期、比较大小、最值、值域及判断奇偶性.4.数学建模:让学生借助数形结合的思想,通过图像探究正、余弦函数的性质.重点:通过正弦曲线、余弦曲线这两种曲线探究正弦函数、余弦函数的性质; 难点:应用正、余弦函数的性质来求含有cosx,sinx的函数的单调性、最值、值域及对称性.
指数函数与幂函数是相通的,本节在已经学习幂函数的基础上通过实例总结归纳指数函数的概念,通过函数的三个特征解决一些与函数概念有关的问题.课程目标1、通过实际问题了解指数函数的实际背景;2、理解指数函数的概念和意义.数学学科素养1.数学抽象:指数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用指数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结指数函数概念.重点:理解指数函数的概念和意义;难点:理解指数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入在本章的开头,问题(1)中时间 与GDP值中的 ,请问这两个函数有什么共同特征.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
除医护人员外,基层干部是另一群在防疫战场上的“逆行者”,工作在贴近群众的“一线战场”,调查出疫情传播的“第一手消息”。因此,基层干部要在思想上认清防疫工作的严峻形势,严格遵守疫情防控工作纪律,查真情、录实况。把干部们的精力真正集中到战场一线中来。我们不是投身于为表格数据服务,而是投身于为人民服务,慎小事微对待防疫工作,敦本务实践行初心使命,这才是防疫期间基层干部应有的“真实”姿态。 近日,不少关于防疫工作的基层“硬核”宣传标语以及村干部喊话视频在网络上走红。这些言辞虽引人发笑却并不俗气,句句饱含着的都是在基层沟通中所需要的“地气”,以及基层干部们对群众健康安全的关心和劝诫。基层领导们根据所在地区实际情况进行科学谋划,精准施策,合理分配,利用“村村响”、宣传单、告知书、设卡值守、上门摸排等一系列扎实的手段将防疫工作全面铺展开来,筑造起一座座坚实的“战斗堡垒”,形成一道道严密的防疫阵线。 基层的防疫“战事”里,采集信息,摸排数据,上门走访等工作总是一刻不停地唱着“主角戏”。这样的工作很枯燥繁琐,也容易惹人生厌,但却也是防疫工作战线中最基础最重要的“挖战壕”工程。采集了详实的信息,描述了完善的事实,便是挖出了坚实可靠的“战壕”,基层干部这些“战士”同伴们便能更加自如地阻击肺炎病毒“攻城略地”。信息统计不留一丝遗漏,也就是不为病毒扩散留下一丝可能。
材料五航路开辟后,东方香料输入欧洲的总量较中古之时猛增30倍,而胡椒、丁香等在印度购入和在英国卖出的差价亦高达10至29倍,其他货物的获利同样惊人。这一时期,新的商品不断涌现,特别值得注意的是美洲的特产——玉米、马铃薯、烟草、可可等——被传播到欧亚大陆。这时,世界性的对外贸易主要通过大西洋,地中海与意大利皆告衰落,而沿大洋的英、荷等渐居中心。到17世纪时,英国的伦敦与荷兰的阿姆斯特丹成为世界贸易中心。问题4:材料五表明,新航路开辟后对世界贸易产生了哪些重大影响?答案4:结束了世界相对孤立状态;各地文明开始会合交流,日益连成一个整体;欧洲商人直接同世界各地建立商业联系;促进不同国家和贸易的发展,促进世界市场雏形开始出现。
基本部分: 1、请幼儿用手摸自己的喉咙,然后分别大声和小声说话看看有什么感觉吗?(多找一些幼儿说出他们的感受)师幼总结:大声说话,喉咙震动的就大,小声说话,喉咙震动的就小。 2、请幼儿用勺子敲敲瓷碗里面的水,分别轻轻敲,用力敲,看看用什么发现吗?幼儿回答完后师幼一起总结:轻轻敲碗,发出的声音小,碗里的水动的小;用力敲碗,发出的声音大,碗里的水动的也大。 师总结:哦,原来振动产生了声音,我们便听到了声音。 3、做律动“科学泡泡”调动幼儿情绪。 教师放电话铃声,然后接电话。(两个纸杯做的电话)教师装出很神秘的感觉,提高幼儿的兴趣。 a教师将范例电话发给幼儿让他们观察它的做法。然后把做电话的材料发给幼儿让他们和自己的好朋友一起合作制作一个电话。
准备 本市(县)、中国地图各1张。地球仪两个。一朵小红花。每个幼儿备一张自己的照片(不超过2寸)。 过程 1、我的家在哪里 教师出示本市(县)地图。并提问:“谁能从这张图上找到我们的幼儿园?”当幼儿找到时,请用小红花贴到幼儿园的位置上。再请幼儿继续寻找“我的家在哪儿?”小朋友分组到地图前找自己的家,找到自己家的小朋友,可把自己的照片贴到上面去。经过大家一番寻找和粘贴,一幅生动、亲切的“我的家”的地图制成了。 2、我们的祖国--中国真大 教师出示地球仪,并提问:“谁能找到中国在什么地方?”“我国周围有哪些国家?”此时,教师出示世界地图,引导幼儿在世界地图上和其他国家比较,最后得出“我们中国在世界上是个很大的国家”的结论。
(2)知道熊猫是生活在深山竹林里爱吃剑竹的动物。 活动准备: 幼儿去动物园看过大熊猫,与幼儿共同收集熊猫的玩具或照片,熊猫吃竹子的图片一张或录象带一盘。 活动过程:1、引导幼儿观察熊猫的特征和生活习性。 教师:小朋友很喜欢小动物,你们看,谁来了?(出示熊猫玩具) (1)提问:你们喜欢熊猫吗?为什么? (2)提问:熊猫是什么样子的? (3)提问:它生活在哪里?它喜欢吃什么?
为了维护合同当事人的合法权益,委托人与受托人双方本着自愿、平等、协商一致的原则,就受托人接受委托人的委托提供自费出国留学中介服务事宜,达成如下协议:一、服务项目及费用第一条 委托人申请赴新加坡 院校外文名称, (院校中文名称)留学.第二条 受托人向委托人提供留学前往国家的咨询、代办入学申请手续等中介服务。第三条 当申请学生签证成功后,委托人向受托人缴付出国留学中介服务费合计为人民币(大写) 元,或者是等值新元。如果在申请学生签证成功后,委托人需要取消留学,需缴纳委托人40%的中介服务费用。第四条 受托人提供的服务包括:1 替委托人在指定的学校报名2 替委托人申请学生签证3 帮助委托人在新加坡找好住所4 在委托人来新加坡的时候接飞机5 帮助委托人熟悉学校环境6 帮助委托人办理银行卡,易通卡二、受托人义务第五条 提供信息1.受托人承诺向委托人提供的出国留学信息、宣传介绍材料、广告等,内容真实。2.受托人应当向委托人介绍前往国家的教育制度、留学政策、留学签证政策和申请留学院校的性质、办学资质、入学要求、入学申请程序等基本情况。4.受托人应当告知委托人申请留学院校的收费项目、收费标准和缴纳费用的办法。第六条 申请入学1.受托人代为委托人办理入学申请手续。2.受托人指导或为委托人办理缴纳报名费、学杂费等有关费用的手续。3受托人应当及时向委托人报告办理入学申请的进展、结果。第七条 办理签证1.受托人指导委托人进行签证申请准备,协助委托人办理签证或入境批准文件。第八条 其他1.如受托人为委托人办理申请入学、签证服务等,其收取的费用应在本合同第三条中介服务费中标明。2.如受托人代委托人向国外院校缴纳报名费、学杂费等费用,受托人应向委托人提供收费方的符合法律要求的证明文件。3.受托人对委托人提供的所有材料,均负有保密义务。除为委托人入学申请、签证申请的目的之外,不得向无关的第三方透露。
1. 签约之前当事人应当仔细阅读本合同内容。2. 本合同文本中涉及到的选择、填写内容以手写项为优先。3. 本合同以盖有“中国(香港)留学生教育服务中心”正式公章及法人代表签章为有效合同。4. 本合同中涉及的中介服务费必须向中国(香港)留学生教育服务中心财务交纳(或汇入中国(香港)留学生教育服务中心指定账户中),以收到中国(香港)留学生教育服务中心开具的正式票据为收款凭证。如无中国(香港)留学生教育服务中心的正式票据,受托人有权停止履行该合同中任何的责任并对委托人交付的费用不付任何责任。5. 本合同中涉及学校申请费、使馆签证费、注册费、学校医疗保险费、住宿费、监护人费、接机费、学费、押金等,必须由受托人通知委托人向中国(香港)留学生教育服务中心财务或相关学校、领馆等机构交纳,以收到中国(香港)留学生教育服务中心或办事处开具的代收款票据为收款凭证。如无中国(香港)留学生教育服务中心开具的代收款票据,涉及一切款项转、交、退等责任,受托人概不负责。6. 委托人在办理申请过程中发生的护照、公证、体检、翻译、机票等杂费应向有关办理机构缴纳,如委托受托人代办,款项必须向中国(香港)留学生教育服务中心或办事处财务交纳,并以中国(香港)留学生教育服务中心开具的代收款票据为收款凭证,如无中国(香港)留学生教育服务中心的代收款票据,受托人对此业务概不负责。
【幼儿分析】 小班的小朋友年龄普遍偏小,再加上家长对方面的教育相对薄弱点,刚入园时只有几个幼儿能认识几种主色调,大部分的幼儿一种颜色也不认识。因此如何教会幼儿认识颜色是我们老师迫切需要解决的问题。为了让幼儿迅速掌握颜色,我根据幼儿的年龄特点,在本次活动中,为幼儿创设了相关课题情景的内容,让孩子们在兴高采烈地活动、游戏中不知不觉的掌握抽象的颜色。 【活动目标】 1、培养对颜色的兴趣,认识红、黄、蓝三原色。 2、初步培养幼儿的观察能力,动手操作的能力。 3、初步在探索中懂得将两种颜色混在一起可以变成另外的一种颜色,产生探索周围事物颜色的兴趣。 【活动准备】 1、红、黄、蓝颜料、棉签若干、颜料盒若干。 2、透明玻璃板若干。 3、颜色小精灵的图片一张。 4、绘画纸人手一份。
第一条 服务项目1、甲方同意委托乙方以甲方的名义申请赴 (国家)留学,留学类别属 (学历或非学历教育)。并同意乙方以甲方的名义与所赴国驻华使(领)馆联系,代为甲方办理申请签证手续。2、申请类型、学校名单(标准)、申请数量和所选择的相关专业等以《院校专业确认表》(见附件)为准。第二条 甲方的责任与义务1、甲方应符合中国公民自费出国留学的条件,遵守国家关于公民自费出国留学的规定。 2、甲方须按照乙方的要求向乙方提供申请学校及申办签证所需的甲方全部资料,但以为实现合同目的所必须的资料为限。在申办过程中,如前往国家的留学政策、签证政策或申请留学院校的入学要求等有关方面的政策、规定发生变动,需要甲方补充材料时,甲方须在乙方根据相关国家、学校或使(领)馆规定而向甲方提出补充文件材料的合理期限内提供所需的材料。甲方应保证及时、真实、全面地向乙方提供上述所有材料,如因甲方无法联系或提供材料不及时、不真实、不全面或提供不合法、无效的材料而导致申办不成,乙方不承担由此产生的后果。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。