9.例二:如图,AB∩α=B,A?α, ?a.直线AB与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线。理由如下:若直线AB与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β, 由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而 , 进而A∈α,这与A?α矛盾。所以直线AB与a是异面直线。补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线。10. 例3 已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解: 直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.
由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系. 数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念; 2.逻辑推理:正弦曲线与余弦曲线的联系; 3.直观想象:正弦函数余弦函数的图像; 4.数学运算:五点作图; 5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.
本节课是正弦函数、余弦函数图像的继续,本课是正弦曲线、余弦曲线这两种曲线的特点得出正弦函数、余弦函数的性质. 课程目标1.了解周期函数与最小正周期的意义;2.了解三角函数的周期性和奇偶性;3.会利用周期性定义和诱导公式求简单三角函数的周期;4.借助图象直观理解正、余弦函数在[0,2π]上的性质(单调性、最值、图象与x轴的交点等);5.能利用性质解决一些简单问题. 数学学科素养1.数学抽象:理解周期函数、周期、最小正周期等的含义; 2.逻辑推理: 求正弦、余弦形函数的单调区间;3.数学运算:利用性质求周期、比较大小、最值、值域及判断奇偶性.4.数学建模:让学生借助数形结合的思想,通过图像探究正、余弦函数的性质.重点:通过正弦曲线、余弦曲线这两种曲线探究正弦函数、余弦函数的性质; 难点:应用正、余弦函数的性质来求含有cosx,sinx的函数的单调性、最值、值域及对称性.
指数函数与幂函数是相通的,本节在已经学习幂函数的基础上通过实例总结归纳指数函数的概念,通过函数的三个特征解决一些与函数概念有关的问题.课程目标1、通过实际问题了解指数函数的实际背景;2、理解指数函数的概念和意义.数学学科素养1.数学抽象:指数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用指数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结指数函数概念.重点:理解指数函数的概念和意义;难点:理解指数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入在本章的开头,问题(1)中时间 与GDP值中的 ,请问这两个函数有什么共同特征.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
问题导入:问题一:试验1:分别抛掷两枚质地均匀的硬币,A=“第一枚硬币正面朝上”,B=“第二枚硬币正面朝上”。事件A的发生是否影响事件B的概率?因为两枚硬币分别抛掷,第一枚硬币的抛掷结果与第二枚硬币的抛掷结果互相不受影响,所以事件A发生与否不影响事件B发生的概率。问题二:计算试验1中的P(A),P(B),P(AB),你有什么发现?在该试验中,用1表示硬币“正面朝上”,用0表示“反面朝上”,则样本空间Ω={(1,1),(1,0),(0,1),(0,0)},包含4个等可能的样本点。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率计算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)积事件AB的概率恰好等于事件A、B概率的乘积。问题三:试验2:一个袋子中装有标号分别是1,2,3,4的4个球,除标号外没有其他差异。
1.圆柱、圆锥、圆台的表面积与多面体的表面积一样,圆柱、圆锥、圆台的表面积也是围成它的各个面的面积和。利用圆柱、圆锥、圆台的展开图如图,可以得到它们的表面积公式:2.思考1:圆柱、圆锥、圆台的表面积之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?3.练习一圆柱的一个底面积是S,侧面展开图是一个正方体,那么这个圆柱的侧面积是( )A 4πS B 2πS C πS D 4.练习二:如图所示,在边长为4的正三角形ABC中,E,F分别是AB,AC的中点,D为BC的中点,H,G分别是BD,CD的中点,若将正三角形ABC绕AD旋转180°,求阴影部分形成的几何体的表面积.5. 圆柱、圆锥、圆台的体积对于柱体、锥体、台体的体积公式的认识(1)等底、等高的两个柱体的体积相同.(2)等底、等高的圆锥和圆柱的体积之间的关系可以通过实验得出,等底、等高的圆柱的体积是圆锥的体积的3倍.
新知探究:向量的减法运算定义问题四:你能根据实数的减法运算定义向量的减法运算吗?由两个向量和的定义已知 即任意向量与其相反向量的和是零向量。求两个向量差的运算叫做向量的减法。我们看到,向量的减法可以转化为向量的加法来进行:减去一个向量相当于加上这个向量的相反向量。即新知探究(二):向量减法的作图方法知识探究(三):向量减法的几何意义问题六:根据问题五,思考一下向量减法的几何意义是什么?问题七:非零共线向量怎样做减法运算? 问题八:非零共线向量怎样做减法运算?1.共线同向2.共线反向小试牛刀判一判(正确的打“√”,错误的打“×”)(1)两个向量的差仍是一个向量。 (√ )(2)向量的减法实质上是向量的加法的逆运算. ( √ )(3)向量a与向量b的差与向量b与向量a的差互为相反向量。 ( √ )(4)相反向量是共线向量。 ( √ )
2、讲授新课:(35分钟)通过教材第一目的讲解,让学生明白,生活和学习中有许多蕴涵哲学道理的故事,表明哲学并不神秘总结并过渡:生活也离不开哲学,哲学可以是我正确看待自然、人生、和社会的发展,从而指导人们正确的认识和改造世界。整个过程将伴随着多媒体影像资料和生生对话讨论以提高学生的积极性。3、课堂反馈,知识迁移。最后对本科课进行小结,巩固重点难点,将本课的哲学知识迁移到与生活相关的例子,实现对知识的升华以及学生的再次创新;可使学生更深刻地理解重点和难点,为下一框学习做好准备。4、板书设计我采用直观板书的方法,对本课的知识网络在多媒体上进行展示。尽可能的简洁,清晰。使学生对知识框架一目了然,帮助学生构建本课的知识结构。5、布置作业我会留适当的自测题及教学案例让同学们做课后练习和思考,检验学生对本课重点的掌握以及对难点的理解。并及时反馈。对学生在理解中仍有困难的知识点,我会在以后的教学中予以疏导。
一、“五个一帮带联系”的内涵 学校领导班子成员和各处室中层干部每人联系一个年级组,深入一个班级,指导一个教研组,帮扶一名青年教师,转化一名“学困生”。 二、具体工作要求 .联系一个年级组。联系年级组的干部要经常深入年级组,了解年级组工作情况,了解教师的工作情况和学生的学习情况,参加年级组全体教师大会、班主任工作会议,对年级的教育教学工作进行指导。参加年级组全体学生大会,对学生进行教育和鼓励。参加年级组家长委员会和家长会,了解家长对学校工作的意见和建议,对家庭教育进行指导和帮助。
一、家长必须按照学校规定的到校时间,将学生送到学校门口。如果提前送孩子,必须等校门开了以后,学生进入校门,家长方可离去。 二、学生在校期间,不准私自离开学校。如有特殊情况,须经班主任与家长联系得知情况后,由家长或家长指定的亲属来接。 三、学生在校期间,任课教师不得以任何理由让学生独自离开课堂或离开学校为自己办事。
1、学生会全体成员会议每月召开一次, 时间为每月最后一个周。各部需及时对上一月工作总结及下月工作计划及取得的成绩进行汇报,并在计划提出的5天内、活动结束的7天内把书面计划和总结上交秘书处。每月月初,各部需向秘书处提交本月工作计划,每月月末各部需向秘书处提交本月工作总结。年终各部需提交本年度工作总结,此总结记入部门年终考核。当月有活动的部门须在当月委员会会议中提交活动策划由委员会会议审议,并在活动结束后于当月委员会会议上进行工作总结。
2、小预备铃响后,教师必须立即站到教室门口,关注并确保每个学生都迅速做好课前准备(摆好学习用品,课本放到作业本上,文具放在旁边,坐得端正),确保室内安静。 3、上课铃响后,班长喊“起立!”老师精神抖擞走上讲台,亲切地招呼学生“同学们好!”同学们回答“老师好!”老师微笑着说“请坐下!”学生坐下。
二、集体备课 ㈠、地点:各学部教师办公室或集体备课室 ㈡、时间:文、理科不同时,确保不影响正常教学秩序。 ㈢、负责人:备课组长 ㈣、一般程序及任务 1、质疑问难,研讨下周所教的教材; 2、研讨下周每节课如何引导学生紧张、高效地自学,达到五个“统一”:⑴、统一进度(划分课时);⑵、统一学习目标;⑶、统一思考题和检测题;⑷、统一课堂作业;⑸、统一教学过程。
1、学校值班人员分成四类:门卫保安、学校行政人员、教师、后勤人员。 2、学校需要值班的五种情景:平时、双休日、暑期、节日、台风等特殊时 候。 3、平时值班人员有门卫保安、行政人员和教师。门卫全天候负责学校安全 、学校行政人员、负责校园内的安全和行为规范等情况、教师负责年级组和班级 的安全等情况,学校行政人员需做好行政值日记录,教师需做好年级值日记录。
2、班、团、队会应围绕爱国主义、集体主义,围绕法制和安全,围绕学习指导,围绕环保节能,围绕行为规范养成等专题展开系列教育。 3、开展班、团、队会活动时,应注意内容和形式的统一,寓教于乐,应注意教育目的明确和教育手段的巧妙结合。
2、各小组长每周至少对组员进行一次2-3分钟的安全指导或警示,小组内本周未出现任何安全事项,核查属实后,奖该组2分; 3、举报本校安全人事或安全隐患的,一人一次奖2分。
②就寝铃声响后,不得在寝室讲话,违者一次扣1分,屡教不改者扣5分,并报告班主任; ③晚休后,还在床上吃东西的,一次扣1分,屡教不改者扣5分; ④不服从值日生或寝室长管理的,对说对辩的,及时上报值周老师或班主任,一次扣3分。 2、就餐纪律: ①按时就餐,不能找任何借口不就餐,不买菜,一次扣1分; ②按要求排队就餐,不推不挤不插队,违者一次扣1分,造成严重后果,从严处理; ③不乱倒饭菜,吃饭要及时洗碗,不得把脏碗长时间放在碗架上,违者一次扣2分; ④不乱用他人餐具,发现一次扣1分; ⑤打饭值日生认真履行职责,不乱扔乱敲餐具,有责任保护好餐具,失职者一次一人扣1分,损坏餐具赔偿。 3、课堂纪律: ①文艺委员及时起课前歌,故意推脱一次扣1分,全班同学起立,认真唱课前歌,故意扰乱者,一次扣1分; ②尊重老师,上课认真听讲,不起哄,不顶撞老师,违者一次扣2分;
2、作业认真,书写工整规范,正确率高,由任课老师给以适当的奖励; 3、早自习读书声音洪亮,朗朗上口,小组受到任课老师表扬的,奖小组1分; 4、背书、听写以篇数为单位,论难易度,给以2-5的奖励; 5、单元考试成绩,由各任课老师定标准,给以奖励; 6、月考成绩,总成绩进线的,每人奖3分,年级前三名,每人奖20分,年级前10名,每人奖18分,年级前20名,每人奖16分,年级前30名,每人奖14分,年级前40名,每人奖12分,年级前50名,每人奖10分,年级前60名,每人奖8分,年级前70名,每人奖6分,年级前80名,每人奖4分,年级前90名,每人奖2分;年级前180名,每人奖1分;进步幅度超过5个或5个以上名次的,每周奖3分(以上奖励不累计算,每周都奖)。
第二条原则上学生会例会参加的人员范围是学生会副部长以上成员,特殊情况除外,部门会议由部长组织召开每周至少一次。 第三条参加会议人员应做好会议记录,以便结合本部门的实际情况作好工作安排(期末上交存档及作为考评依据)。 第四条听取各部门的工作汇报。汇报的内容主要包括:
第一,预习的习惯 学会应用预习提示、查阅工具书或有关资料进行学习,对有关问题加以认真思考,把不懂的问题做好标记,以便课上有重点地去听、去学、去练。 第二,爱惜学习用品的习惯 提前准备好第二天的学习用品。对学习用品要珍惜、保护,小心使用,不乱扔、不故意损坏。要敢于向任意损坏学习用品的行为作斗争。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。