
解:设甲班的人数为x人,乙班的人数为y人,根据题意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人数为48人,乙班的人数为45人.方法总结:设未知数时,一般是求什么,设什么,并且所列方程的个数与未知数的个数相等.解这类问题的应用题,要抓住题中反映数量关系的关键字:和、差、倍、几分之几、比、大、小、多、少、增加、减少等,明确各种反映数量关系的关键字的含义.三、板书设计列方程组,解决问题)一般步骤:审、设、列、解、验、答关键:找等量关系通过“鸡兔同笼”,把同学们带入古代的数学问题情景,学生体会到数学中的“趣”;进一步强调数学与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神;进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.

方法总结:(1)利用列表法估算一元二次方程根的取值范围的步骤是:首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.

解:设需要剪去的小正方形边长为xcm,则纸盒底面的长方形的长为(19-2x)cm,宽为(15-2x)cm.根据题意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法总结:列方程最重要的是审题,只有理解题意,才能恰当地设出未知数,准确地找出已知量和未知量之间的等量关系,正确地列出方程.在列出方程后,还应根据实际需求,注明自变量的取值范围.三、板书设计一元二次方程概念:只含有一个未知数x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c为常数,a≠0)的形式一般形式:ax2+bx+c=0(a,b,c为常 数,a≠0),其中ax2,bx,c 分别称为二次项、一次项和 常数项,a,b分别称为二次 项系数和一次项系数本课通过丰富的实例,让学生观察、归纳出一元二次方程的有关概念,并从中体会方程的模型思想.通过本节课的学习,应该让学生进一步体会一元二次方程也是刻画现实世界的一个有效数学模型,初步培养学生的数学来源于实践又反过来作用于实践的辩证唯物主义观点,激发学生学习数学的兴趣.

(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业

方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.

∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.三、板书设计用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步骤①化为一般形式②确定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判别式经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解求根公式的基础.通过对求根公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单.体会数式通性,感受数学的严谨性和数学结论的确定性.提高学生的运算能力,并养成良好的运算习惯.

首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.

3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;

二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况

二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况

易错提醒:利用b2-4ac判断一元二次方程根的情况时,容易忽略二次项系数不能等于0这一条件,本题中容易误选A.【类型三】 根的判别式与三角形的综合应用已知a,b,c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有两个相等的实数根,请判断△ABC的形状.解析:先将方程转化为一般形式,再根据根的判别式确定a,b,c之间的关系,即可判定△ABC的形状.解:将原方程转化为一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有两个相等的实数根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.

2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;

解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.

一是树立“以人为本、安全发展”构建和谐矿区的新理念。安全生产工作事关公司和职工生命财产安全,事关基本建设全面发展。在深入贯彻国家有关法律法规的基础上,把“安全发展”的理念更加深入人心,让安全文化进各施工单位每个角落,促进我公司基本建设快速发展。各部门、各单位的领导,要进一步增强安全生产法律法规意识,树立“以人为本、安全第一”的责任感和紧迫感,认真负责地抓好安全建设工作,坚决防止事故的发生,真正担负起“综合治理,保障平安”的责任。

一是树立“以人为本、安全发展”构建和谐矿区的新理念。安全生产工作事关公司和职工生命财产安全,事关基本建设全面发展。在深入贯彻国家有关法律法规的基础上,把“安全发展”的理念更加深入人心,让安全文化进各施工单位每个角落,促进我公司基本建设快速发展。各部门、各单位的领导,要进一步增强安全生产法律法规意识,树立“以人为本、安全第一”的责任感和紧迫感,认真负责地抓好安全建设工作,坚决防止事故的发生,真正担负起“综合治理,保障平安”的责任。

同学们,军训很苦,苦的让人不愿坚持,但军训也很甜,他可以增强我们的体魄,深化我们的情感,提升我们的思想境界。为此,我对同学们提出三点要求: 一、要求同学们要把自己当做一名真正的军人,严格要求自己,继承和发扬不怕苦、不怕累、艰苦奋斗的精神,克服困难、努力拼搏,圆满完成军训任务。 二、希望同学们在接下来的军训中,学会关心集体,关心他人,建立深厚的战友情、同学情,增强班级荣誉感。 三、希望同学们每天训练后要认真总结,及时深化心灵深处的精神力量,使之成为将来学习、生活和工作所需的宝贵财富。

今天我讲话的主题是“珍爱生命,拒绝毒品”。同学们,你们知道哪些是毒品吗?毒品是指鸦片、海洛因、吗啡、大麻,可卡因以及国务院规定管制的其他能够使人形成隐癖的麻醉药品和精神药品。现在,毒品已蔓延全球,成为世界一大公害,各国政府和人民对它无不深恶痛绝。我们正值青春花季,天真烂漫,无忧无虑。你以为我们就可以放松警惕了吗?其实这些白色的幽灵无时无刻不在我们身边徘徊,向我们逼来。看!一个个扭曲抽搐的躯体,一个个支离破碎的家庭,一双双呆滞空洞的眼睛,一声声痛不欲生的呻吟……天津某校的一名青年坚信自己有很强的自制力,从而尝试了一次静脉注射,之后就一直没能控制住自己,一步步走向深渊;云南艺术学校一名19岁女生,以跳孔雀舞而小有名气,第一次吸毒竟是因为胃痛,听人说吸了立马就不痛了,就这样一次,两次,三次,海洛因又扼杀了一只美丽的孔雀,埋葬了她自己,埋葬了青春。所以,我们不要对毒品存在任何的侥幸心理,永远不要尝试那“第一口”,那一口就有可能葬送了你的全部啊!

六年时间很快过去了,你们即将离开母校,但我想你们的记忆不会离开。你们选择继续学习的学校虽然不同,但你们为未来拼搏,为母校增光的信念是一致的。你们将在新的学校努力刻苦学习,将来成为社会的有用人材,让学校和各位老师感到自豪。昨天,你们沉浸在艰辛的喜悦,收获了无穷的经验而微笑;今天,你们身体充满了沸腾的血液,压抑了离别时的忧郁;而明天,你们就要朝着自己崭新的梦想,创造属于自己的一片蓝天!最后,我代表母校的所有师生祝福你们的明天更美好!

这篇国旗下的讲话演讲稿:珍爱生命 安全出行是由整理提供的,请大家参考!国旗下的讲话演讲稿:珍爱生命 安全出行国旗下讲话写下这个题目,我就知道我在拾人牙慧——古往今来,流传下来的关于这方面的文章真是浩如烟海,表现这个主题的故事也是汗牛充栋,许多先哲们富含哲理的话至今铿锵在耳,我难道比人家有什么更深刻更高明的见解吗 如果是.那显然是不明智的,也是不自量力的——所以在这个问题上,无论怎么说和说什么,也是难脱离前人的窠臼,也都是老调重弹.但是,即使冒天下之大不敬,我还是要大声疾呼:人们啊,一定要珍爱生命!发出这样的呐喊,是缘于我最近看的两篇报道,都是关于自己作孽,漠视生命而导致交通事故,造成死亡的悲惨结局的.一则是关于酒后驾车酿祸的,驾驶员潘某与朋友聚餐,其自恃量大,连干数杯.出门上车,尚觉无恙.谁知所喝之酒后劲大,不一会儿,便头昏脑胀,手脚不灵.他想快点开车回家,不料在上一座立交桥后,汽车失控,导致越过栏杆,坠至桥下,遂车毁人亡.另一则是关于新鲜好奇而招致车祸的.某厂长去市外办事,途中正在学习驾驶,尚未取得驾证的厂长非得让驾驶员坐副驾驶座上,自己开车过一把车瘾.结果在一条没有隔离带的道路上,与对面车错车时相撞,厂长死亡,驾驶员负重伤.

国旗下的讲话演讲稿:学礼仪 讲美德 做文明学生尊敬的领导、敬爱的老师,亲爱的同学们: 大家上午好!今天我讲话的题目是《学礼仪 讲美德 做文明学生》 记得有人说过:“人,一撇一捺,写起来容易做起来难。我们要经常性地思考,我在做什么,我做得怎样,我要成为怎样的人。”做怎样的人,一百个人会有一百种答案,但在每一个答案的背后都有一个基点,那就是做人首先要做一个文明的人。在与同学交往中,我们要明礼守法讲美德。遵守校规校纪,自觉礼让排队,保持公共卫生,爱护公共财物。 做文明学生,我们还要衣着整洁,举止端庄,行为得体,不比吃喝穿戴,节粮节水节电,勤俭节约护校园。 孝亲尊师善待人。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。