解:由题意得a+b=0,cd=1,|m|=6,m=±6;∴(1)当m=6时,原式=06-1+6=5;(2)当m=-6时,原式=0-6-1+6=5.故a+bm-cd+|m|的值为5.方法总结:解答此题的关键是先根据题意得出a+b=0,cd=1及m=±6,再代入所求代数式进行计算.探究点三:有理数乘法的应用性问题小红家春天粉刷房间,雇用了5个工人,干了3天完成;用了某种涂料150升,费用为4800元,粉刷的面积是150m2.最后结算工钱时,有以下几种方案:方案一:按工算,每个工100元;(1个工人干1天是一个工);方案二:按涂料费用算,涂料费用的30%作为工钱;方案三:按粉刷面积算,每平方米付工钱12元.请你帮小红家出主意,选择哪种方案付钱最合算(最省)?解析:根据有理数的乘法的意义列式计算.解:第一种方案的工钱为100×3×5=1500(元);第二种方案的工钱为4800×30%=1440(元);第三种方案的工钱为150×12=1800(元).答:选择方案二付钱最合算(最省).方法总结:解此题的关键是根据题意列出算式,计算出结果,比较得出最省的付钱方案.
讨论归纳,总结出多个有理数相乘的规律:几个不等于0的因数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个因数为0,积就为0。(2)几个不等于0的因数相乘时,积的绝对值是多少?(生:积的绝对值是这几个因数的绝对值的乘积.)例2、计算:(1) ;(2) 分析:(1)有多个不为零的有理数相乘时,可以先确定积的符号,再把绝对值相乘;(2)若其中有一个因数为0,则积为0。解:(1) = (2) =0练习(1) ,(2) ,(3) 6、探索活动:把-6表示成两个整数的积,有多少种可能性?把它们全部写出来。(三)课堂小结通过本节课的学习,大家学会了什么?(1)有理数的乘法法则。(2)多个不等于0的有理数相乘,积的符号由负因数的个数决定。(3)几个数相乘时,如果有一个因数是0,则积就为0。(4)乘积是1的两个有理数互为倒数。(四)作业:课本作业题
解析:∵ab>0,根据“两数相除,同号得正”可知,a、b同号,又∵a+b<0,∴可以判断a、b均为负数.故选D.方法总结:此题考查了有理数乘法和加法法则,将二者综合考查是考试中常见的题型,此题的侧重点在于考查学生的逻辑推理能力.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计可以采用课本的引例作为探究除法法则的过程.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.并讲清楚除法的两种运算方法:(1)在除式的项和数字不复杂的情况下直接运用除法法则求解.(2)在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.
方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.三、板书设计加法法则(1)同号两数相加,取与加数相同的符号,把绝对 值相加.(2)异号两数相加,取绝对值较大加数的符号,并 用较大的绝对值减去较小的绝对值.(3)互为相反数的两数相加得0.(4)一个数同0相加,仍得这个数.本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,把学生从被动学习变为主动想学.在本节教学中,要坚持以学生为主体,教师为主导,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.
1.掌握有理数混合运算的顺序,并能熟练地进行有理数加、减、乘、除、乘方的混合运算.2.在运算过程中能合理地应用运算律简化运算.一、情境导入在学完有理数的混合运算后,老师为了检验同学们的学习效果,出了下面这道题:计算-32+(-6)÷12×(-4).小明和小颖很快给出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小颖:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判断出谁的计算正确吗?二、合作探究探究点一:有理数的混合运算计算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)题是含有减法、乘法、除法的混合运算,运算时,一定要注意运算顺序,尤其是本题中的乘除运算.要从左到右进行计算;(2)题有大括号、中括号,在运算时,可从里到外进行.注意要灵活掌握运算顺序.
1、掌握有理数混合运算法则,并能进行有理数的混合运算的计算。2、经历“二十四”点游戏,培养学生的探究能力[教学重点]有理数混合运算法则。[教学难点]培养探索思 维方式。【教学过程】情境导入——有理数的混合运算是指一个算式里含有加、减、乘、除、乘方的多种运算.下面的算式里有哪几种运算?3+50÷22×( )-1.有理数混合运算的运算顺序规定如下:1 先算乘方,再算乘除,最后算加减;2 同级运算,按照从左至右的顺序进行;3 如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。 加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。注意:可以应用运算律,适当改变运算顺序,使运算简便.合作探究——
师生共同归纳法则2、异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。生5:这两天的库存量合计增加了2吨。(+3)+(-1)=+2 或(+8)+(-6)=+2师:会不会出现和为零的情况?提示:可以联系仓库进出货的具体情形。生6:如星期一仓库进货5吨,出货5吨,则库存量为零。(+5)+(-5)=0师生共同归纳法则3、互为相反数的两个数相加得零。师:你能用加法法则来解释法则3吗?生7:可用异号两数相加的法则。一般地还有:一个数同零相加,仍得这个数。小结:运算关键:先分类运算步骤:先确定符号,再计算绝对值做一做:(口答)确定下列各题中和的符号,并说明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 计算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:请四位学生板演,让学生批改并说明理由。
内容:情景1:多媒体展示:提出问题:从二教楼到综合楼怎样走最近?情景2:如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?意图:通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情.效果:从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础.第二环节:合作探究内容:学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.
方法总结:题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.探究点二:利用勾股定理求面积如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中△ABE的面积为________,阴影部分的面积为________.解析:因为AE=BE,所以S△ABE=12AE·BE=12AE2.又因为AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因为AC2+BC2=AB2,所以阴影部分的面积为14AB2+14AB2=12AB2=12×32=92.故填94、92.方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.
意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.教学设计反思(一)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.
意图:(1)介绍与勾股定理有关的历史,激发学生的爱国热情;(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第六环节: 回顾反思 提炼升华内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.
探究点二:勾股定理的简单运用如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,A1B1=8km.现要在高速公路上A1、B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离和.解析:运用“两点之间线段最短”先确定出P点在A1B1上的位置,再利用勾股定理求出AP+BP的长.解:作点B关于MN的对称点B′,连接AB′,交A1B1于P点,连BP.则AP+BP=AP+PB′=AB′,易知P点即为到点A,B距离之和最短的点.过点A作AE⊥BB′于点E,则AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B两村庄的最短距离和是10km.方法总结:解这类题的关键在于运用几何知识正确找到符合条件的P点的位置,会构造Rt△AB′E.三、板书设计勾股定理验证拼图法面积法简单应用通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,学会勾股定理的应用并逐步培养学生应用数学解决实际问题的能力,为后面的学习打下基础.
当Δ=l2-4mn<0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个点P;当Δ=l2-4mn=0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的两个点P;当Δ=l2-4mn>0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的三个点P.方法总结:由于相似情况不明确,因此要分两种情况讨论,注意要找准对应边.三、板书设计相似三角形判定定理的证明判定定理1判定定理2判定定理3本课主要是证明相似三角形判定定理,以学生的自主探究为主,鼓励学生独立思考,多角度分析解决问题,总结常见的辅助线添加方法,使学生的推理能力和几何思维都获得提高,培养学生的探索精神和合作意识.
这次疫情一定会以摧枯拉朽之势,让本应该多年才能完成的行业性的、系统性的变革在短时间内就席卷而来,将会是一次全面的大体检,对于我们每一个人,对于XX,均是如此。 众擎易举共奋进,寒以成物春不远。在经济变革和升级的过程中,在这个大体检的过程中,我希望大家牢记:所有的变化,不会因为任何事件的发生而停滞,相反,只会加速到来。所以,新的一年,对于XX集团和每一位同事来说,都是一个新的起航、一个新的挑战,同时也将是一个重要的颠覆点。
强化特种设备和工业产品安全主体责任“两个规定”落实,加强企业风险管控,推动5家气瓶和压力管道元件制造单位、326家气瓶充装单位配备安全总监和安全员,完成9537家工业产品相关生产销售单位摸底工作和分层分级责任清单,推动2395家工业产品生产销售单位配备质量安全总监和安全员,建立企业安全风险隐患清单并实行闭环管理。四、强化系统治理,高质量推进专项整治有效开展自治区市场监管局围绕燃气安全“一件事”,坚持远近结合,深化标本兼治,多措并举提高专项整治质效。聚焦液化石油气瓶制造、充装、检验以及“灶、管、阀、气”等相关产品生产销售集聚区、安全问题易发区加强案件查办。实施信息化精准管理,完成全部气瓶充装企业与广西气瓶信息追溯管理平台充装数据对接,实现特种设备信息可追溯。同时,强化从业人员和基层执法培训;通过新闻媒体多渠道、多形式全方位宣传报道燃气安全专项整治行动,营造整治浓厚氛围。
随着科技的发展,我国进入“互联网”时代,网上信访成倍增加。在面对面接访群众的基础上,汉滨区还为群众提供了电话信访、网络信访等方便快捷的诉求渠道,并通过领导干部接访下访包案等方式解决信访诉求问题。今年以来,区委、区政府认真践行“浦江经验”工作模式,区级领导率先垂范、亲力亲为,深入开展领导干部下访、接访、化访的“三访”活动,持续推进“五个一”、专班调度、联动劝返、督察督办、律师参与化访等信访化解制度,确保群众反映的问题和诉求在规定的时限内得到妥善解决,让群众带着委屈怨气来,揣着舒心安心回。今年以来,区级领导共计接访下访化访164次、接待群众184件次,在接待中心坐班接待来访群众52次72件次、下访30次,接待化解信访问题30件次,镇(街道)科级干部接访82件次。为有效减少重复访、越级访,汉滨区各级信访部门坚持以创新工作思路、工作方法和工作机制为切入点,始终围绕接收受理、处置办理、回复反馈等环节,规范工作程序,明确职责权限、受理范围、办理时限等内容规范开展信访工作,用日趋完善的制度和机制画好为民服务的“同心圆”,为全区信访工作提供有力支持。
强化特种设备和工业产品安全主体责任“两个规定”落实,加强企业风险管控,推动5家气瓶和压力管道元件制造单位、326家气瓶充装单位配备安全总监和安全员,完成9537家工业产品相关生产销售单位摸底工作和分层分级责任清单,推动2395家工业产品生产销售单位配备质量安全总监和安全员,建立企业安全风险隐患清单并实行闭环管理。四、强化系统治理,高质量推进专项整治有效开展自治区市场监管局围绕燃气安全“一件事”,坚持远近结合,深化标本兼治,多措并举提高专项整治质效。聚焦液化石油气瓶制造、充装、检验以及“灶、管、阀、气”等相关产品生产销售集聚区、安全问题易发区加强案件查办。实施信息化精准管理,完成全部气瓶充装企业与广西气瓶信息追溯管理平台充装数据对接,实现特种设备信息可追溯。同时,强化从业人员和基层执法培训;通过新闻媒体多渠道、多形式全方位宣传报道燃气安全专项整治行动,营造整治浓厚氛围。
2.整顿干部队伍。物业公司由原四个中心整合而成,员工很多,公司成立之初,干部上岗时没有进行竞聘,经过将近一年时间的工作,部分干部能够胜任工作,一部分能力还比较欠缺。经公司领导研究决定,今年会在适当时候进行调整,完善干部队伍,选拔高素质、能力强的员工为基层领导。 3.合理规划部门。公司建立之初部门的规划经过一段时间的运作,有不尽完善的地方,特别是不能提高工作效率,提升服务质量。我们将基于第2点对公司部门进行进一步调整,合理划分部门,现暂确定为五个部门,分别是学生公寓管理部、校园管理部、楼宇管理部、保安部、办公室。
2.整顿干部队伍。物业公司由原四个中心整合而成,员工很多,公司成立之初,干部上岗时没有进行竞聘,经过将近一年时间的工作,部分干部能够胜任工作,一部分能力还比较欠缺。经公司领导研究决定,今年会在适当时候进行调整,完善干部队伍,选拔高素质、能力强的员工为基层领导。 3.合理规划部门。公司建立之初部门的规划经过一段时间的运作,有不尽完善的地方,特别是不能提高工作效率,提升服务质量。我们将基于第2点对公司部门进行进一步调整,合理划分部门,现暂确定为五个部门,分别是学生公寓管理部、校园管理部、楼宇管理部、保安部、办公室。
二、培养良好的学习习惯和学习方法 加强对学生的心理辅导,在现阶段就开始动起来,把一些有可能影响学生学习的因素减少到最少,由于我们本身的经验并不丰富,同时我们班的学生跟同年级的同学相比,他们也有共同之处,那么为了能够让他们学得更好、考得更好,我们也就只有一个办法:笨鸟先飞。对每一次考试成绩做好跟踪,及时找学生谈心,了解其思想学习情况。加强学生自我管理建设管理小组,由学习委员带头课代表、组长为骨干,全面负责班级学习工作;开展学习竞赛活动;开展“学习结对,共同提高”的互帮互助学习活动;加强师生对话建立师生联系制度,以周记形式有话就说,实话实说;建立师生结对活动,让学生走近老师、了解老师、激发热爱老师的热情,让老师走近学生,指导学生竖立更远大的理想、提供更科学地学习的方法、养成更好地生活态度