1、产业结构不够合理。通过调研我们发现,**村存在种植业比重偏大、种植品种单一、农产品销售渠道不畅、农情信息闭塞的现象,没有能形成规模效应和链条效应,缺乏具有明显带动区域经济发展的主导产业的现象,这同时也是我县乡村产业结构不合理的缩影。 2、农民综合素质较差。一直以来,我县农民受教育程度较低,观念陈旧,种养殖技术落后,缺乏创新意识,政府在加强技术培训和新兴产业推广方面努力不够,好多生产仍局限于传统的老旧种植模式,致使农民增收困难。 3、土地流转难度太大。退耕还林以来,可种植土地较少,几乎都是到户分散经营,加之群众对土地流转政策不清,致使千百年来靠地吃饭的老百姓害怕流转丧失永远的经营权,即使外出务工闲置也不愿流转。因此,出现想多种地却没地种的局面,许多土地被撂荒的现象。
一是理论学习态度不够满正,缺乏对理论学习重要性的认识,不能够从提高修养,推动工作的高度去对待,缺乏思想上的刻苦性,不愿做深入细致的思考;缺乏行动上的紧迫感,不愿太下功夫去学习,导致学习的能力不足。 二是政绩观存在偏差,不能正确处理上级满意与对下负责之间的关系,想问题、干工作图“领导高兴,上级肯定”的多,顾“人民拥护、基层欢迎”的少,存在功利主义的思想。
师生的双边活动坚持“以幼儿为主体,教师为主导”的原则,注重幼儿学习知识的“过程化、经验化及主动性建构”,通过孩子的自主学习、合作学习、探究学习来解决问题。老师做到讲得“少”一点,“引”得巧一点,让孩子学得“精”一点,“活”一点,领悟得“深”一点,“透”一点。根据本课教学目标、及重点难点,设计了以下教学程序: 第一部分、创设情境,激发兴趣:师:(出示母鸡家背景图)有一只母鸡今天特别高兴,,我们来猜猜为什么,好吗?老师表演歌表演<<咯咯哒>>(5分钟左右) 老师的导入是这样设计的:师:(出示母鸡家背景图)有一只母鸡今天特别高兴,,我们来猜猜为什么,好吗?老师表演歌表演<<咯咯哒>>然后进行提问谈话: 刚才听着音乐你看到了什么?听到了什么?这里让幼儿充分发挥幼儿的想象力,语言表达力,引起幼儿的兴趣。
唤起幼儿对母亲爱的情感,使幼儿感受到亲情是多么美好<<母鸡太太和两个蛋>>幼儿园语言教案的内容,是一篇优秀的文学作品,故事中讲述了母鸡太太为了孩子出生辛苦孵蛋,及小鸡知道妈妈的辛苦在蛋壳谈论怎样回报妈妈,唤起幼儿对母亲爱的情感,使幼儿感受到亲情是多么美好这个故事,语言精练优美,抓住妈妈爱孩子,孩子爱妈妈这一关在键点,根据《纲要》精神和孩子已有的能力实际、知识水平及教材要求,我确定了本课的教学目标、重点、难点。1、情感目标:在感知和理解故事的过程中,体验妈妈爱孩子,孩子爱妈妈的情感2、能力目标:要求幼儿能简单地表演故事中的对话语言.3、知识目标:鼓励幼儿大胆地运用已有生活经验理解和回答问题.
预设目标:1、稳定幼儿的情绪,愿意来幼儿园,亲近老师能随老师同伴一起游戏活动。2、认识班里的同伴和老师知道自己是幼儿园的小朋友。3、在老师的帮助下愿意做自己能做的事情。4、初步培养幼儿生活方面的自理能力。家长配合:1、坚持送孩子来园。2、为幼儿准备生活照片。3、及时与老师沟通孩子的情绪反应。
一、教学目标(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.(三)学科渗透点通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.二、教材分析1.重点:抛物线的定义和标准方程.2.难点:抛物线的标准方程的推导.三、活动设计提问、回顾、实验、讲解、板演、归纳表格.四、教学过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.首先,利用篮球和排球的运动轨迹给出抛物线的实际意义,再利用太阳灶和抛物线型的桥说明抛物线的实际用途。
教学目的:理解并熟练掌握正态分布的密度函数、分布函数、数字特征及线性性质。教学重点:正态分布的密度函数和分布函数。教学难点:正态分布密度曲线的特征及正态分布的线性性质。教学学时:2学时教学过程:第四章 正态分布§4.1 正态分布的概率密度与分布函数在讨论正态分布之前,我们先计算积分。首先计算。因为(利用极坐标计算)所以。记,则利用定积分的换元法有因为,所以它可以作为某个连续随机变量的概率密度函数。定义 如果连续随机变量的概率密度为则称随机变量服从正态分布,记作,其中是正态分布的参数。正态分布也称为高斯(Gauss)分布。
教学准备 1. 教学目标 知识与技能掌握双曲线的定义,掌握双曲线的四种标准方程形式及其对应的焦点、准线.过程与方法掌握对双曲线标准方程的推导,进一步理解求曲线方程的方法——坐标法.通过本节课的学习,提高学生观察、类比、分析和概括的能力.情感、态度与价值观通过本节的学习,体验研究解析几何的基本思想,感受圆锥曲线在刻画现实和解决实际问题中的作用,进一步体会数形结合的思想.2. 教学重点/难点 教学重点双曲线的定义及焦点及双曲线标准方程.教学难点在推导双曲线标准方程的过程中,如何选择适当的坐标系. 3. 教学用具 多媒体4. 标签
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 8.4 圆(二) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内直线与圆的位置关系有三种(如图8-21): (1)相离:无交点; (2)相切:仅有一个交点; (3)相交:有两个交点. 并且知道,直线与圆的位置关系,可以由圆心到直线的距离d与半径r的关系来判别(如图8-22): (1):直线与圆相离; (2):直线与圆相切; (3):直线与圆相交. 介绍 讲解 说明 质疑 引导 分析 了解 思考 思考 带领 学生 分析 启发 学生思考 0 15*动脑思考 探索新知 【新知识】 设圆的标准方程为 , 则圆心C(a,b)到直线的距离为 . 比较d与r的大小,就可以判断直线与圆的位置关系. 讲解 说明 引领 分析 思考 理解 带领 学生 分析 30*巩固知识 典型例题 【知识巩固】 例6 判断下列各直线与圆的位置关系: ⑴直线, 圆; ⑵直线,圆. 解 ⑴ 由方程知,圆C的半径,圆心为. 圆心C到直线的距离为 , 由于,故直线与圆相交. ⑵ 将方程化成圆的标准方程,得 . 因此,圆心为,半径.圆心C到直线的距离为 , 即由于,所以直线与圆相交. 【想一想】 你是否可以找到判断直线与圆的位置关系的其他方法? *例7 过点作圆的切线,试求切线方程. 分析 求切线方程的关键是求出切线的斜率.可以利用原点到切线的距离等于半径的条件来确定. 解 设所求切线的斜率为,则切线方程为 , 即 . 圆的标准方程为 , 所以圆心,半径. 图8-23 圆心到切线的距离为 , 由于圆心到切线的距离与半径相等,所以 , 解得 . 故所求切线方程(如图8-23)为 , 即 或. 说明 例题7中所使用的方法是待定系数法,在利用代数方法研究几何问题中有着广泛的应用. 【想一想】 能否利用“切线垂直于过切点的半径”的几何性质求出切线方程? 说明 强调 引领 讲解 说明 引领 讲解 说明 观察 思考 主动 求解 思考 主动 求解 通过例题进一步领会 注意 观察 学生 是否 理解 知识 点 50
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
同学们,老师们,大家上午好。XX年就这样悄无声息地过去了,XX年也就这样悄无声息地来了。对于XX年,我们xx在高考中取得了辉煌的成绩,让我们找回了xx昔日的雄心;对于XX年,我们在新高一的招生中,取得了难得的好成绩,让我们找回了xx昔日的自信。对于XX年,我想利用这次国旗下的讲话,和大家聊聊,对于我们xx的学子,应该以什么样的形象来面对XX年,因为这一年是特殊的一年。同学们,今年是原xx一中高中部迁校重建二十周年,是xx市高级中学挂牌成立二十周年,你们准备以什么样的形象,来回报我们的学校,来回报我们的线校,来回报我们的大xx?你们为此又准备好了吗?同学们,xx的学子应该是斗志昂扬的,你们说是不是?姑且不论我们在高考中能够取得什么样的成绩,但至少在意志上我们就要能够战胜自己。高中三年对我们的挑战,远不只是知识的挑战,更是意志的挑战,没有坚持不懈的意志,没有不可战胜的意志,就不可能出成绩。因此,我亲爱的同学们,当我们跑操时手还放在口袋里,当我们晚自习时还在聊天,当我们上课时还在睡觉,这些似乎并不应该是xx学子的形象,xx不需要这样的学生,我们也不忍心看到我们的学生有这份模样。你们要有你们自己的精神,你们要有你们自己的意志,这可能和我们不一样,但你得有精神,你得有意志,否则大家就会瞧不起你。同学们,我们需要有个性的学生,但我们不需要颓废的学生。
各位老师、各位同学:大家早上好!非常高兴,我们又相聚在国旗下,相聚在这阳光明媚的秋日早晨。再过2天,期中考试将悄然而至,大家准备好了吗?对于初一、高一年级的同学来说,这次考试是初中、高中阶段的第一次大型测试,将在很大程度上奠定每一位同学初中、高中三年学习的基调。不仅如此,这一次测试,还可以检测同学们对于不同于小学、初中阶段的学习方法的适应程度,并对自己的学习方法作一些改进。对于初二、高二年级的同学来说,这次考试是一种跨越。初二、高二,是初中高中三年的学习中承上启下的一年。从学习的知识上来说,又加深了一个层次。对于初三年级的同学来说,这次考试是一种演习。作为三年中最为紧张的一年,初三的同学们已经没有时间懈怠。这次期中考试,将是初三同学的又一次中考的预演,初三同学所需要做的,就只有拼搏。
老师们、同学们:早上好!时光飞逝,秋意渐浓,校第四十届运动会刚刚闭幕,期中考试就悄悄来临了。下周一、二、三我们将要进行期中考试了。对于初一的同学们来说,这是你们进入初中的第一场大考。在二中学习了半个学期,学得怎样?这次考试是认清自我、证明自我的绝好机会。而初二的同学们,你们已久经沙场,这次考试将成为你们不断前行过程中的又一个坚实脚印。对于初三的同学们,这场考试的重要性更不必说了,相信你们一定已经卯足了劲为自己的理想而奋斗。总之,对于在场的各位同学,这期中考试需要大家打起十二分精神,认真对待、细致准备,争取理想的成绩。考试的日程安排统一由班主任具体说明,我简单介绍一下考试的科目。初一考试科目:语文、数学、英语、思品、历史、生物、地理;初二考试科目:语文、数学、英语、物理、思品、历史、生物、地理;初三考试科目:语文、数学、英语、物理、化学、思品、历史。
幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x 的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际问题。重点:常见幂函数的概念、图象和性质;难点:幂函数的单调性及比较两个幂值的大小.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.3.2节《对数的运算》。其核心是弄清楚对数的定义,掌握对数的运算性质,理解它的关键就是通过实例使学生认识对数式与指数式的关系,分析得出对数的概念及对数式与指数式的 互化,通过实例推导对数的运算性质。由于它还与后续很多内容,比如对数函数及其性质,这也是高考必考内容之一,所以在本学科有着很重要的地位。解决重点的关键是抓住对数的概念、并让学生掌握对数式与指数式的互化;通过实例推导对数的运算性质,让学生准确地运用对数运算性质进行运算,学会运用换底公式。培养学生数学运算、数学抽象、逻辑推理和数学建模的核心素养。1、理解对数的概念,能进行指数式与对数式的互化;2、了解常用对数与自然对数的意义,理解对数恒等式并能运用于有关对数计算。
学生已经学习了指数运算性质,有了这些知识作储备,教科书通过利用指数运算性质,推导对数的运算性质,再学习利用对数的运算性质化简求值。课程目标1、通过具体实例引入,推导对数的运算性质;2、熟练掌握对数的运算性质,学会化简,计算.数学学科素养1.数学抽象:对数的运算性质;2.逻辑推理:换底公式的推导;3.数学运算:对数运算性质的应用;4.数学建模:在熟悉的实际情景中,模仿学过的数学建模过程解决问题.重点:对数的运算性质,换底公式,对数恒等式及其应用;难点:正确使用对数的运算性质和换底公式.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入回顾指数性质:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么对数有哪些性质?如 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
对数与指数是相通的,本节在已经学习指数的基础上通过实例总结归纳对数的概念,通过对数的性质和恒等式解决一些与对数有关的问题.课程目标1、理解对数的概念以及对数的基本性质;2、掌握对数式与指数式的相互转化;数学学科素养1.数学抽象:对数的概念;2.逻辑推理:推导对数性质;3.数学运算:用对数的基本性质与对数恒等式求值;4.数学建模:通过与指数式的比较,引出对数定义与性质.重点:对数式与指数式的互化以及对数性质;难点:推导对数性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入已知中国的人口数y和年头x满足关系 中,若知年头数则能算出相应的人口总数。反之,如果问“哪一年的人口数可达到18亿,20亿,30亿......”,该如何解决?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。2.掌握判定函数和函数相等的方法。3.学会求函数的定义域与函数值。数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。重点:函数的概念,函数的三要素。难点:函数概念及符号y=f(x)的理解。
《基本不等式》在人教A版高中数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。2.经历基本不等式的推导与证明过程,提升逻辑推理能力。3.在猜想论证的过程中,体会数学的严谨性。数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值;4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。