提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

人教部编版道德与法制六年级上册权力受到制约和监督说课稿

  • 区长在2023年老干部座谈会上的讲话范文

    区长在2023年老干部座谈会上的讲话范文

    今天,我很高兴能够参加这次老干部座谈会,与各位老领导坐在一起,共谋*的发展大计。首先,我谨代表区委、区政府向一直以来关心、支持全区各项事业发展的各位老领导、老同志表示衷心的感谢。借此机会,我代表区委、区政府向各位老领导、老同志简要通报一下*年全区经济社会发展情况,还请各位老领导多提宝贵意见。一、突出项目支撑,注重产业发展质量,经济发展动能进一步增强1.招商水平和项目质量不断提升。一是加大招商引资力度。“走出去”拜访企业*家,“请进来”企业*家,长城汽车小镇、华润啤酒小镇、阳光保险康养综合体等重大项目进展顺利。签约注册项目*个,引进国内实际到位资金*亿元。二是全力推进项目建设。冲伟佳业家居、万鑫宝利新材料等*个亿元以上优质项目开工建设,总投资*亿元;尚品无纺布、嘉碳新材料等*个前景好的产业项目竣工投产,总投资*亿元;此外,东北物流基地、烟草物流园等一批高质量续建项目顺利推进。三是扎实做好项目服务。全面落实“项目管家”制度,对*个重点项目精准帮扶。全面核查解决招商引资承诺不兑现问题,促成*个停工项目复工。认真贯彻落实支持民营企业发展的各项政策,新注册中小企业*户。

  • 在2023年推进清廉建设部署会上的讲话

    在2023年推进清廉建设部署会上的讲话

    同志们:下面,我就如何抓好今年的工作,讲几点意见。一要始终抓牢责任落实。全面深化清廉**建设工作点多、线长、面广,能不能取得更大实效,关键在于责任落实。各清廉单元牵头单位要牢牢扛起主抓责任,各单位主要负责人要认真履行第一责任人职责,以身作则、示范带动班子成员落实好“一岗双责”,发挥好纪检监察工委监督检查作用,推动清廉**建设各项工作落地落实。各专责小组要紧密结合深化清廉建设的新形势新任务新要求,健全评价标准、深入挖掘特色、选树标杆品牌,全面深化7个清廉单元建设。去年,我们有几个单位在抓责任落实方面表现得不错,比如说区清廉办充分展现专班工作团队力量,积极统筹协调、组织推动和督导落实,确保全区清廉建设工作扎实有序开展。教育文体和旅游局充分发挥了主抓责任,我区共有**所学校,但是在去年绩效考评中,他们仍能高效高质完成绩效考评要求,并且在日常工作中也是非常积极推动清廉学校建设,召开清廉学校现场推进会,打造了**小学、**二小等示范点,其他社区学校也均取得不错的成绩,真正做到了以点带面,营造了良好的校风学风、师德师风。还有组织部一个牵头单位就做了四个清廉建设板块的内容

  • 圆的一般方程教学设计人教A版高中数学选择性必修第一册

    圆的一般方程教学设计人教A版高中数学选择性必修第一册

    情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);

  • 圆的标准方程教学设计人教A版高中数学选择性必修第一册

    圆的标准方程教学设计人教A版高中数学选择性必修第一册

    (1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.

  • 直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).

  • 直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.

  • 直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 空间向量基本定理教学设计人教A版高中数学选择性必修第一册

    空间向量基本定理教学设计人教A版高中数学选择性必修第一册

    反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.

  • 两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.

  • 两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]

  • 两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 人教版高中地理必修2不同等级城市的服务功能教案

    人教版高中地理必修2不同等级城市的服务功能教案

    1、 前提条件:①环境几乎一样的平原地区,人口分布均匀2、 ②区域的运输条件一致,影响运输的惟一因素是距离。城市六边形服务范围形成过程。(理解)a.当某一货物的供应点只有少数几个时,为了避免竞争、获取最大利润,供应点的距离不会太近,它们的服务范围都是圆形的。 b.在利润的吸引下,不断有新的供应点出现,原有的服务范围会因此而缩小。这时,该货物的供应处于饱和。每个供应点的服务范围仍是圆形的,并彼此相切c.如果每个供应点的服务范围都是圆形相切却不重叠的话,圆与圆之间就会存在空白区。这里的消费者如果都选择最近的供应点来寻求服务的话,空白区又可以分割咸三部分,分别属于三个离其最近的供应点。[思考]①图2.15中城市有几个等级?②找出表示每一等级六边形服务范围的线条颜色?③叙述不同等级城市之间服务范围及其相互关系?3、理论基础:德国南部城市4、意义:运用这种理论来指导区域规划、城市建设和商业网点的布局。1、 应用——“荷兰圩田居民点的设置”。

  • 人教版高中地理必修2不同等级城市的服务功能精品教案

    人教版高中地理必修2不同等级城市的服务功能精品教案

    学生探究案例:找出不同等级城市的数目与城镇级别的关系、城镇的分布与城镇级别的关系并试着解释原因。在此基础上,指导学生一步步阅读书上的阅读材料,首先说明这是德国著名的经济地理学家克里斯泰勒对德国南部城市等级体系研究得出的中心地理论,他是在假设土壤肥力相等、资源分布均匀、没有边界的平原上,交通条件一致、消费者收入及需求一致、人们就近购买货物和服务的情况下得出的理想模式。然后指导学生阅读图2.14下文字说明,理解城市六边形服务范围形成过程。指导学生读图2.15,找出图中城市的等级、每一等级六边形服务范围并叙述不同等级城市之间服务范围及其相互关系,从而得出不同等级城市的空间分布规律,六边形服务范围,层层嵌套的理论模式。给出荷兰圩田空白图,让学生应用上面的理论规划设计居民点并说出理由,再和教材上的规划进行对照。然后给出长三角地区城市分布图和各城市人口数,让学生对这些城市进行分级,概括每一级城市的服务功能、统计每一等级城市的数目以及彼此间的平均距离,总结城市等级与服务范围、空间分布的关系?

  • 保护环境节约用水主题班会教案

    保护环境节约用水主题班会教案

    教学准备:  1、调查生活中浪费水资源的普遍现象。  2、搜集、制定一些节水措施。  教学过程:  一、利用谜语揭示课题。  1、主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?” 主持人口述谜语: “双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。”  二、从生活经验入手,导入学习。  1、生活中哪些事需要用水?你们家为何不用海水洗澡,洗碗,煮饭??.?  2、出示地球上海水与淡水的组成比例图,初步了解地球上淡水资源的匮乏情况。看了这幅图,你有什么想法?  3、地球上所有的淡水都可以拿来运用吗?你知道有多少淡水可以拿来运用?  4、小结过渡,导入“游戏”。

  • 幼儿园大班社会活动教案:节约用水

    幼儿园大班社会活动教案:节约用水

    [活动目标]1、让幼儿认识水的有关性质及水的用途。2、萌发幼儿节约用水、保护水资源的意识。3、发展幼儿的观察和语言表达能力,为汶河位于家乡而自豪。 [活动准备]1、请家长配合生活中注意节约用水并有意识引导幼儿节约用水。2、实验用的小瓶、杯子、颜料、可乐、醋、透明的塑料细软管。3、(1)被污染水的挂图。  (2)正在滴水的自来水管。  (3)河里的鱼、虾、面临死亡的挂图。  (4)课前家长同幼儿参观汶河。

  • 2023年街道工作计划

    2023年街道工作计划

    (一)狠抓项目建设,稳住经济发展大局。  将继续坚定不移贯彻创新、协调、绿色、开放、共享的新发展理念,以推动高质量发展为主题,以深化供给侧结构性改革为主线,以改革创新为根本动力,统筹发展和安全,加快建设现代化经济体系,助力企业转型升级,实现经济行稳致远。20**年,将积极推进申报的1个省级新旧动能转换优选项目(山东欧创电气有限公司高端电力装备智能智造一体化项目)4个市级重点项目加快建设。

  • 2023年双拥工作总结(街道)

    2023年双拥工作总结(街道)

    7、重大节日期间组织退役军人参加爱国主义教育活动。举行退役军人政治学习两次,清明节、国防教育日组织退役军人开展清明节烈士陵园祭奠活动,“七一”、“八一”期间举行退役军人观影活动,分别观看爱国主义影片《阻击手》、《上甘岭》。x月xx日,组织辖区退役军人志愿者参加在五一广场举办的全民国防教育日活动,通过发放宣传资料、展示图版等形式,调动现场观众参与积极性,提高广大居民参与国防教育和支持国防建设自觉性。8、开展“八一”慰问系列活动共叙军民鱼水情联合共建单位一起走访慰问武警兴安机动大队,并向全体部队官兵致以最诚挚的节日问候。与包联单位开展军营体验观摩活动,部队负责人带大家参观了官兵宿舍,还为大家详细讲解了部队军事训练、后勤保障等情况,营造了“军爱民,民拥军,军民团结一家亲”的良好氛围。

  • 街道2023年度工作总结

    街道2023年度工作总结

    (二)抓细抓实城市管理。为顺利迎接旅发大会,街道将在城市管理上持续发力。扎实推进金沙路路段提质增效,持续向改革"要动能",做好城管体制改革工作,充实执法力量;认真落实门前"两进"责任制度,要求商户做好门前"三包",并结合创文工作,开展小区环境卫生大整治大清理。(三)坚决守住社会稳定底线。始终以服务群众为宗旨,以化解矛盾为导向,聚焦群众急难愁盼的问题,深化矛盾纠纷排查化解,健全社会治安防控体系,建好用好非诉讼纠纷化解机制,全力做好辖区信访及涉稳问题的管控和处置,建成纠纷有调解、小事不出社区、矛盾不上交的治理体系。统筹推进燃气、食品等重点领域安全专项整治,加强安全隐患排查整治和安全生产规范化建设,防范和遏制各类安全事故发生;开展反诈、禁毒、防非处非工作宣传,确保群众生命财产安全和辖区社会和谐稳定。

  • 多措并举助力新录用公务员“向下扎根向上生长”工作总结

    多措并举助力新录用公务员“向下扎根向上生长”工作总结

    同时,始终把一线锻炼作为新录用公务员成长“主阵地”,坚持选派新录用公务员进行“上挂锻炼、下派蹲苗”,进一步开阔视野、丰富经验,让其在基层“沾泥土、挂露珠”,在一线经风雨、长才干,不断积蓄“向上生长”发展后劲。严管厚爱精准“护苗”,锤炼“向上生长”过硬作风。坚持严管厚爱结合、激励约束并重,定期组织新录用公务员参加警示教育大会、观看警示教育纪录片等,时时提醒敲钟,帮助新录用公务员摆正工作心态、强化自我约束,切实提高拒腐防变的自觉性和警觉性;持续强化心理关怀,及时掌握新录用公务员思想动态,深入了解性格特点,充分尊重个人意愿,倾听实时工作感悟,有针对性地加强工作指导、思想引导、心理疏导,传递组织温暖,促进健康成长。同时,严格试用期管理,通过民主测评、个别座谈相结合的方式开展期满考核,从政治素质、履职能力、工作表现等层面进行全方位评价,对考核结果合格的,第一时间任职定级,积极落实待遇保障,不断激发新录用公务员干事创业热情。

  • 高三班级团支部新学期国旗下讲话稿精选

    高三班级团支部新学期国旗下讲话稿精选

    为大家收集整理了《高三班级团支部新学期国旗下讲话稿精选》供大家参考,希望对大家有所帮助!!!尊敬的各位老师,亲爱的同学们,大家好!我致辞的题目是《新学期 新起点》。很荣幸,在新学期的开始能代表全体学生在国旗下讲话。首先请允许我代表全体同学,向多年来为我们辛勤付出的各位老师致以崇高的敬意和诚挚的祝福,祝你们新的学期里身体健康,工作顺利,并预祝所有的同学们学习进步,健康成长。金秋送爽,硕果飘香,在这酷夏的暑气还没有消退之时,我们已迎来了一个崭新的学期。学校里来了新的面孔,为学校注入了新鲜的血液。我们也是一样,度过了一个欢乐美好的暑期,怀着无比喜悦的心情又回到了熟悉而又亲切的菁菁校园。经过了烈日烤灼的校园更是焕然一新。新学期,新气象。新,就是与旧不同;新,就是变化;新,就是进取;新,就是发展;新,就是创造。在新的学校,在新的学期,我们要不断求新,求变化,求进取,求发展,求创造。因为教育是常新的,十三中学是常新的,十三中学的每一个学子都是常新的。

上一页123...300301302303304305306307308309310311下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。