提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

部编版语文九年级上册《就英法联军远征中国致巴特勒上尉的信》教案

  • 幼儿园中班数学教案:贴窗花

    幼儿园中班数学教案:贴窗花

    2、培养孩子们对数活动的兴趣,愿意和同伴一起交流和分享自己的经验。 准备:窗花(雪花片)每组一筐,六格窗户底版人手一份(16开纸教师用记号笔分六格),幼儿活动材料(数字卡片),教师用卡片一套过程:一、复习数型歌及相邻数1、请孩子们正确区分6和9,2和3等数字的开口朝向2、我的邻居在那里? 教师随意抽出一张1——10之间的数字卡请孩子们找一找它的相邻数是谁和谁?(也可以请孩子来抽取数字卡)。如:3的相邻数是2和4二、游戏贴窗花1、猜一猜窗格上的数字(六格中的数字都要求孩子们猜一猜、想一想,不要直接告诉孩子,这样可以提高趣味性,使活动更加有趣) 请孩子们将猜到的数字用数字卡片和相应多的窗花(雪花片)来表达。如:左边第一格的数字是我们的眼睛加鼻子(3),中间窗格里的数字是和我们右手手指头一样多(5),下面窗格里的数字像老爷爷的拐杖(数型歌中的7)。右边第一格的数字像小小鸭子(2),中间窗格里的数字是我们的双手加双脚(4),下面窗格里的数字和我们第一组的宝宝一样多(6) 检查孩子们排的数字及窗花是否正确(可以请孩子们相互验证)

  • 中班数学教案:认识几何图形

    中班数学教案:认识几何图形

    2、通过情景游戏等活动,让幼儿初步感知图形之间的转换关系,并能想办法解决问题。 3、培养幼儿思维的灵活性,发展幼儿动手能力,激发幼儿学习数学的欲望。活动准备: 1、学会了各种图形的特征。 2、自制的“小路”,上面镂刻大小不同的图形“土坑”,将镂刻下来的图形作成铺路的“石头”。小篮同幼儿人数。 3、圆形、三角形、长方形、正方形的图形标记,音乐。 活动过程: 一、情景导入“捡石头”,激发幼儿活动兴趣。 1、“小朋友,今天的天气真好,我们一起去郊外捡石头!”(随音乐进入活动室) 2、教师提出操作要求:“快看!有那么多五彩缤纷的小石头,大家可以挑自己喜欢的捡。”

  • 中班科学教案:怎样固定小图片?

    中班科学教案:怎样固定小图片?

    (2)能分析比较使用不同材料进行固定的特点。 活动准备:  双面胶、磁性板、动植物、人物的小图片若干。 活动过程:1、出示小图片及各种材料,引起幼儿动脑尝试的欲望。  教师:秋天真美丽,这里有许多小朋友自己涂.剪的秋天的花果树.人和动物的图片,我们来把这些小图片放在板上,看画讲故事,好吗?可是我们用什么办法让这些小图片固定在这几张直立的板上呢?

  • 幼儿园中班科学教案:弯弯乐园

    幼儿园中班科学教案:弯弯乐园

    【活动准备】1、各种布条、毛线。2、多媒体课件。 【活动过程】一、感知了解生活中各种各样的弯1、谈话活动:上午,新老师让小朋友寻找了生活中的弯弯朋友,现在,请你们跟大家介绍一下,说说找到了哪些弯弯朋友。(幼儿自由发言)2、老师也找到了一些弯弯的朋友,我们一起看大屏幕。 二、借故事,初步了解各种不同的弯1、(演示课件,引导幼儿观察)弯弯乐园里有各种各样的弯弯朋友,找找看,你找到了哪些弯?这些弯是怎样的?你觉得哪个弯最有趣(鼓励幼儿用语言、动作表现自己找到的各种弯)。

  • 幼儿园中班数学教案:认识数字10

    幼儿园中班数学教案:认识数字10

    2.重点难点:   重点:感知10以内的数,初步认识数字10。   难点:学习数字和图片、圆点进行匹配。  二、过程实录:  (一)活动目标:   1.感知10以内的数,初步认识数字10。   2、理解10表示的实际意义,学习数字和图片\圆点进行匹配。   3.大胆参与数学操作及交流活动。   (二)活动准备:   1、每张座位上贴上1-9的数字,每人一张胸卡(有数量不等的小动物)   2、数量为78910的动物卡片若干,大色子一个  (三)活动过程:  1、复习9以内的数量  1)导入:春天来了,我们一起去郊游吧!(幼儿随郊游音乐进场)   2)游戏:找座位,根据胸卡上图片的数量找相应的座位号。   师:我们每人都挂了一个卡片,看,我的卡片上有什么?有几只?那要去找数字几呢?(9只刺猬找9号座位,这就是对号入座)请你看看你的卡片上有几只动物应该找几号座位?

  • 幼儿园中班数学教案:泡泡排队

    幼儿园中班数学教案:泡泡排队

    2、能按大小颜色等交替重复的规律玩排序游戏。   3、对数学活动感兴趣。活动准备:  1、教具准备:“吹泡泡” 2、学具准备:”吹泡泡“;橡皮泥若干,彩笔、各种颜色的短毛线若干。   3、《操作侧》第四册第5-6页。  活动过程:  1、预备活动   师幼互相问候。   走线,线上游戏:大家一起来拍手,第一个幼儿拍1下,第二个幼儿拍2下,第三个幼儿拍3下,第四个幼儿拍4下,依次拍下去。  2、集体活动。  创设情境:小樱子和小柚子给我们送来了他们自己吹的泡泡(教师出示教具“吹泡泡”)。

  • 幼儿园中班数学教案:按标记分类

    幼儿园中班数学教案:按标记分类

    2、通过“送图形宝宝回家”的游戏,根据图形的三个特征进行分类。   3、积极参与数学游戏,体验数学游戏的乐趣。  活动准备: 1、教具:大骰子三个,贴好标记。   2、学具:   (1)各种图形若干。   (2)贴有标记的小骰子人手三个,各种图形每组一份,人手一只小箩筐。   (3)贴有三个标记的大箩筐若干,连成一列火车。  活动过程:  一、来了一群图形宝宝,看有哪些图形宝宝?复习学过的图形。   教师在黑板上出示各种图形,请幼儿集体或个别回答,说出图形的名称和特征。   如:红颜色的三角形;黄色的正方形等等。要求幼儿能说出图形的特征。  二、帮图形宝宝找朋友。按三个特特征选择图形。   师:图形宝宝要去旅游,想请我们帮她们找朋友。怎么找呢?老师给小朋友准备了三个骰子,我们可以请骰子来帮忙。

  • 幼儿园中班数学教案:图形游戏

    幼儿园中班数学教案:图形游戏

    2、通过动手操作,发展幼儿空间想象能力和创造能力。 3、培养幼儿对数学活动的兴趣。准备: 教师用具:大的圆形、正方形和三角形各一个,小箱子一个(里面放图形若干,纸做的小鸟一只), 幼儿学具:每人一套几何图形(有三角形、正方形、长方形、梯形、半圆形,圆形等若干)过程:一、引出课题,激起兴趣 今天我带来了几位图形宝宝,这些图形宝宝可真有趣,它们会变魔术,变成另外一个图形宝宝呢。

  • 幼儿园中班数学教案-分花伞

    幼儿园中班数学教案-分花伞

    2、鼓励幼儿用自己的方式简单清楚地记录,发展幼儿的观察能力。3、引导幼儿清楚地表述自己的记录结果。重点:继续鼓励幼儿用自己的方式记录,简单清楚。难点:在老师的引导下清楚地表述自己的记录结果 设计思路:《幼儿园教育纲要》中指出,教育内容应“贴近幼儿的生活来选择幼儿感兴趣的事物和问题,有助于拓展幼儿的经验和视野”。前一段时间,一直是阴雨绵绵的天气,我班的孩子都带来了伞,并且议论着伞。我们知道,伞与我们的生活有着密切的关系,它的来历,发展过程、功能等都具有一定的探索价值和教育价值。因此我们根据纲要精神,及时利用这一资源,开展了主题“伞的秘密”的探索活动。果然,活动很快激发了孩子强烈的探索欲望。随后,他们的兴趣点集中在伞的特征上,他们发现了伞的许多不同,如:颜色、形状、图案、大小不同,伞的布料也不同等等。我想,在了解幼儿当前的兴趣、经验、需要以及现阶段非正式活动进行的分类内容,可以结合主题活动整合一些数方面的内容,因此我设计了本次正式活动——分花伞,帮助幼儿提升归纳分类的经验,发展幼儿的思维抽象能力。通过两次非正式活动和一次正式活动,幼儿已经初步能用自己的方式记录(尽量简单,让自己和别人都看得清楚),在本次活动中将继续提高使用表征符号的能力;另外,幼儿具有了一些分类的经验,在多重分类的基础上,开始向按物体的某一明显特征作肯定与否定的分类过渡。

  • 中班数学教案:拾落叶(数物匹配)

    中班数学教案:拾落叶(数物匹配)

    2、会用接数的方法,正确目测7以内(4、5、6、7)的数群。准备: 1、空间场地放有树叶若干。 2、标有4、5、6、7数字点子卡片 3、标有4、5、6、7数字的篮子4只过程: 一、练习按点卡拾落叶。 1、教师:“秋天到了,小树叶离开了大树妈妈,落了一地。我们来玩一个拾落叶的游戏。(出示标有4、 5、6、7数字点子卡片)清幼儿看清卡片上有几个点子,就拾几片叶子,再用绳子捆成一捆。”

  • 【高教版】中职数学拓展模块:2.3《抛物线》教学设计

    【高教版】中职数学拓展模块:2.3《抛物线》教学设计

    一、教学目标(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.(三)学科渗透点通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.二、教材分析1.重点:抛物线的定义和标准方程.2.难点:抛物线的标准方程的推导.三、活动设计提问、回顾、实验、讲解、板演、归纳表格.四、教学过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.首先,利用篮球和排球的运动轨迹给出抛物线的实际意义,再利用太阳灶和抛物线型的桥说明抛物线的实际用途。

  • 【高教版】中职数学拓展模块:3.5《正态分布》教学设计

    【高教版】中职数学拓展模块:3.5《正态分布》教学设计

    教学目的:理解并熟练掌握正态分布的密度函数、分布函数、数字特征及线性性质。教学重点:正态分布的密度函数和分布函数。教学难点:正态分布密度曲线的特征及正态分布的线性性质。教学学时:2学时教学过程:第四章 正态分布§4.1 正态分布的概率密度与分布函数在讨论正态分布之前,我们先计算积分。首先计算。因为(利用极坐标计算)所以。记,则利用定积分的换元法有因为,所以它可以作为某个连续随机变量的概率密度函数。定义 如果连续随机变量的概率密度为则称随机变量服从正态分布,记作,其中是正态分布的参数。正态分布也称为高斯(Gauss)分布。

  • 【高教版】中职数学拓展模块:2.2《双曲线》教学设计

    【高教版】中职数学拓展模块:2.2《双曲线》教学设计

    教学准备 1. 教学目标 知识与技能掌握双曲线的定义,掌握双曲线的四种标准方程形式及其对应的焦点、准线.过程与方法掌握对双曲线标准方程的推导,进一步理解求曲线方程的方法——坐标法.通过本节课的学习,提高学生观察、类比、分析和概括的能力.情感、态度与价值观通过本节的学习,体验研究解析几何的基本思想,感受圆锥曲线在刻画现实和解决实际问题中的作用,进一步体会数形结合的思想.2. 教学重点/难点 教学重点双曲线的定义及焦点及双曲线标准方程.教学难点在推导双曲线标准方程的过程中,如何选择适当的坐标系. 3. 教学用具 多媒体4. 标签

  • 【高教版】中职数学拓展模块:2.1《椭圆》优秀教学设计

    【高教版】中职数学拓展模块:2.1《椭圆》优秀教学设计

    本人所教的两个班级学生普遍存在着数学科基础知识较为薄弱,计算能力较差,综合能力不强,对数学学习有一定的困难。在课堂上的主体作用的体现不是太充分,但是他们能意识到自己的不足,对数学课的学习兴趣高,积极性强。 学生在学习交往上表现为个别化学习,课堂上较为依赖老师的引导。学生的群体性小组交流能力与协同讨论学习的能力不强,对学习资源和知识信息的获取、加工、处理和综合的能力较低。在教学中尽量分析细致,减少跨度较大的环节,对重要的推导过程采用板书方式逐步进行,力求让绝大多数学生接受。 1.理解椭圆标准方程的推导;掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标. 2.通过椭圆图形的研究和标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用。 1.让学生经历椭圆标准方程的推导过程,进一步掌握求曲线方程的一般方法,体会数形结合等数学思想;培养学生运用类比、联想等方法提出问题. 2.培养学生运用数形结合的思想,进一步掌握利用方程研究曲线的基本方法,通过与椭圆几何性质的对比来提高学生联想、类比、归纳的能力,解决一些实际问题。 1.通过具体的情境感知研究椭圆标准方程的必要性和实际意义;体会数学的对称美、简洁美,培养学生的审美情趣,形成学习数学知识的积极态度. 2.进一步理解并掌握代数知识在解析几何运算中的作用,提高解方程组和计算能力,通过“数”研究“形”,说明“数”与“形”存在矛盾的统一体中,通过“数”的变化研究“形”的本质。帮助学生建立勇于探索创新的精神和克服困难的信心。

  • 人教版高中数学选修3排列与排列数教学设计

    人教版高中数学选修3排列与排列数教学设计

    4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).

  • 人教版高中数学选修3超几何分布教学设计

    人教版高中数学选修3超几何分布教学设计

    探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.

  • 人教版高中数学选修3二项式定理教学设计

    人教版高中数学选修3二项式定理教学设计

    二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中数学选修3全概率公式教学设计

    人教版高中数学选修3全概率公式教学设计

    2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?

  • 人教版高中数学选修3条件概率教学设计

    人教版高中数学选修3条件概率教学设计

    (2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.

  • 人教版高中数学选修3正态分布教学设计

    人教版高中数学选修3正态分布教学设计

    3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.

上一页123...486487488489490491492493494495496497下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。