解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
在教学中,我深知坚持不懈的学习是必要的。在实践工作中,我深深体会到教师业务素质的重要性。学习时虽然很苦,但掌握知识后心中也会有一种无比的欢乐。如果教学工作干不好,不是自我可干可不干的问题,是必须干好的问题。因为你占着位置,别人想干也不能干,你如果不干,影响的不是你的事,而是整个教育的事业。所以,我们必须坚持不懈地抓学习,圆满地去完成学校的各项工作任务。
每个人来到这个世上,都希望演绎出一段精彩辉煌的人生。学生们希望得到优秀的成绩,演员们希望得到观众的赞赏,设计师希望得到人们的认同总之,每一个生活在这世上的人都希望得到别人的认可,簇拥的鲜花和热烈的掌声。但生活中并不是事事如人所愿的。每当我们伫立一旁,目睹别人创造的成功,分享朋友带给的喜悦,往往私下感叹自己的平庸与渺小。其实,古人云:天生之人必有才,天生我材必有用,我们为什么不给自己一点信心让自己的生活增加几道亮色,添上一份精彩呢?自信是我们成长过成中的精神核心,是努力实现自己理想的精神动力。只要我们扬起自信的风帆,用自信去拥抱我们的人生,我坚信,成功也将属于我们。因为拥有自信,我们脆弱的心灵会因此变得坚强
房产:a夫妻双方婚后购有坐落在×路×号×小区×栋×单元×号的楼房一套,登记在男方/女方(或双方)名下,属夫妻共有财产。离婚后,该套房屋归男方/女方所有(注:包括房内装修内附属设施及相关配套设施),双方相互配合办理产权变更登记手续。因办理产权变更登记手续所应支付的一切税费等均由男方/女方承担。取得房屋所有权的一方给予另一方经济补偿人民币×××元,在本协议签订之日起×日内付清。
方自离婚证领取之日起,取得下列夫妻之间共同财产的所有权:市号,房产约平方米(已装璜),价值约万元;彩电一台、冰箱一台、洗衣机一台、空调一台、家俱一套、组合音响一套、生活日用品件,总计约________元;同时取得该房产的国用(________)字第号国有土地使用权。
一、近期工作计划 1.配合好院学生会完成10月11日的迎新晚会纪律工作。 2.安排好日常工作,加大早操早读查勤力度。增加宿舍偷电查处次数,杜绝安全隐患。 3.配合体育部完成迎新杯篮球赛。 二、远期工作计划 1.定期召开本部门例会,有针对性的进行内部问题的解决。 2.强化服务意识,并进一步增加干事成员之间的相互交流。 3.了解各个成员在工作期间的想法和感受,以及调动他们的积极性。 4.针对每次出现的问题进行改进,进一步完善本部门的工作方法,提高工作效率。
出示填空:当小雨滴起来,他们便一起唱着歌:小溪,河流,大海。从_____,唱到_____。指名学生填空。
我说课的题目是小学道德与法治五年级上册《自主选择课余生活》。下面我将从教材分析、学情分析、教学目标与重难点、教法与学法、教学过程、板书设计6个方面进行说课。一、教材分析《自主选择课余生活》是统编教材小学《道德与法治》五年级上册第一单元第1课,共有三个话题,本节课学习的是第三个话题《过好我们的课余生活》,主要是引导学生课余生活的选择既有兴趣,又有意义,要学习规划自己的课余生活,学会过好课余生活的方法,旨在引导学生能够过好课余生活,让课余生活促进学生的健康成长。二、学情分析自主选择是学生的权利,也是成长过程中需要发展的能力。随着年龄的增长和知识、经验的增多,学生对一些事情有了自己的看法,特别是希望能按照自己的想法安排课余生活。但是他们现在的课余生活大都是家长来主导,学生自主选择课余活动的机会几乎很少。因此,要帮助引导学生面对成长中的这个困惑,通过有效的教学能够过好课余生活,让课余生活促进学生的健康成长。三、教学目标与重难点基于教材、学情的分析,以及对小学道德与法治课程的理解,我确定了本节课的教学目标与重难点。教学目标我确定了三个。
一、说教材(一)教材分析本课是最新部编版《道德与法治》六年级下册第二单元第5 课。本单元主要从地球为人类生活提供了所需要的空间、环境和资源出发到人了对环境的破坏引发各种自然灾害,引导学生从自己身边可触可感的资源出发,感知防御自然灾害的重要意义,了解自然灾害及造成自然灾害的原因,树立环保意识。通过自己的智慧与创造,改善生活环境,遵守相关法律法规,共同担负起爱护地球的责任。本课先从我国发生的各种自然灾害入手,让学生感知自然灾害造成的损失以及造成这些自然灾害的缘由,引导学生明白只有加强对环境的保护才能减少自然灾害的发生。然后聚焦的是如何应对自然灾害,树立防灾避险的意识。了解自救自护知识,提高自救自护能力。(二)教学目标1. 具有应对自然灾害的能力,保护自己和他人的意识。2. 初步了解我国自然灾害的种类、分布及其危害; 知道如何预防自然灾害、 灾害来临时保护措施。3. 初步掌握收集、整理和运用信息的能力。(三)教学重难点教学重点:了解我国自然灾害的种类、分布及其危害;知道如何预防自然灾害。教学难点:形成应对自然灾害的能力
我是来自高一十班的学生代表,我今天讲话的主题是:感知自然。说起自然,大家对此似乎并不陌生,但仔细回想时,却是否发现,自然只在我们的童年时代里,才是如此真切呢?这样看来,自然好像被我们淡忘已久,就像是要离我们而去了一般。其实却不然,自然它就在我们身边,它是校道上为我们带来荫庇的大树,是羊蹄甲随意落下的花瓣,是雨天后被打湿翅膀在地上歇息的小鸟。这些都是自然表现的方式,它们不经意的散落在我们的身边,只是等待我们去感知。然而在许多同学的生活中,充斥着的似乎就是学习和游戏,觉得学习累了就去游戏一把,或突然意识到堕落了就去勤奋学习一番;又有多少同学会在学习之余抬头望一望窗外,在烦闷之余闻一闻花香,闲暇之际看一看池塘里灵巧的鱼虾,用感知自然的方式来放松自己?人们常说,自然是最富有灵气的。可如今我们一心扎堆于书本或网络中,忽略了身边自然带来的种种美好,任这繁杂的喧嚣,带走自然最初赋予我们的心中最纯朴的一抹灵动,失去了我们少年时代本应有的活力与阳光,这难道不令我们惋惜吗?除了生活,在知识中也需要感知自然,我们学习和常说的自然科学,不就是自然中的科学吗?牛顿不也是在感知自然的同时发现万有引力的吗?知识来自于自然,我们又有什么理由不去好好的感知自然呢?
导语:关于自信的国旗下讲话稿怎么写?以下是小编精心为大家整理的有关关于自信的国旗下讲话稿范文,希望对大家有所帮助,欢迎阅读。关于自信的国旗下讲话稿一: 先给大家讲一个小故事:有一位女歌手,第一次登台演出,内心十分紧张。想到自己马上就要上场,面对上千名观众,她的手心都在冒汗:“要是在舞台上一紧张,忘了歌词怎么办?”越想,她心跳得越快,甚至产生了打退堂鼓的念头。就在这时,一位前辈笑着走过来,随手将一个纸卷塞到她的手里,轻声说道:“这里面写着你要唱的歌词,如果你在台上忘了词,就打开来看。”她握着这张纸条,像握着一根救命的稻草,匆匆上了台。也许有那个纸卷握在手心,她的心里踏实了许多。她在台上发挥得相当好,完全没有失常。她高兴地走下舞台,向那位前辈致谢。前辈却笑着说:“是你自己战胜了自己,找回了自信。其实,我给你的,是一张白纸,上面根本没有写什么歌词!”她展开手心里的纸卷,果然上面什么也没写。她感到惊讶,自己凭着握住一张白纸,竟顺利地度过了难关,获得了演出的成功。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。