(设计意图:因为圆中有关的点、线、角及其他图形位置关系的复杂,学生往往因对已知条件的分析不够全面,忽视某个条件,某种特殊情况,导致漏解。采用小组讨论交流的方式进行要及时进行小组评价。)(3) 议一议( 如图,OA、OB、OC都是圆O的半径∠AOB=2∠BOC, 求证:∠ACB=2∠BAC。)(设计意图:通过练习,使学生能灵活运用圆周角定理进行几何题的证明,规范步骤,提高利用定理解决问题的能力。)(三)说小结首先,通过学生小组交流,谈一谈你有什么收获。(提示学生从三方面入手:1、学到了知识;2、掌握了哪些数学方法;3、体会到了哪些数学思想。)然后,教师引导小组间评价。使学生对本节内容有一个更系统、深刻的认识,实现从感性认识到理性认识的飞跃。(四)、板书设计为了集中浓缩和概括本课的教学内容,使教学重点醒目、突出、合理有序,以便学生对本课知识点有了完整清晰的印象。我只选择了本节课的两个知识点作为板书。
6、问题的检验学生提出的问题和老师拓展的问题在解答过程中,学生能否真正领会,或领会的程度如何?这就需要检验才能了解。检验的方式很多,可以通过交流、调查、反思、随堂检测等方式进行。我主要采用随堂检测的方式,把事先准备好的自测题发给学生,或利用多媒体投影来进行当堂检测。检测题目不宜过多,可随学生的课堂表现而有所增减,同时,把拓展性的问题作为思考题留给学生课外探索。如,这节课我是选择了《同步作业》中的几个具有代表性的问题来完成检验的。安排这一环节的意图:通过把教学内容以问题的形式列出来,用于检验学生对知识点的掌握和教师教学效果的了解,帮助教师及时掌控课堂教学情况,调整教学思路和教学进度。7、我的收获和疑惑课程结束时,让学生谈谈自己的收获以及还有哪些问题没能搞明白。安排这一环节的意图:这一环节可以促使学生对本节课的内容进行主动的、深层次的的回顾与反思,从而加深学生对所学知识的整理、记忆与理解,同时也便于老师对课堂教学效果的及时掌握和调整以后的教学思路。
设计意图这一组习题的设计,让每位学生都参与,通过学生的主动参与,让每一位学生有“用武之地”,深刻体会本节课的重要内容和思想方法,体验学习数学的乐趣,增强学习数学的愿望与信心。4.回顾反思,拓展延伸(教师活动)引导学生进行课堂小结,给出下列提纲,并就学生回答进行点评。(1)通过本节课的学习,你学会了哪些判断直线与圆位置关系的方法?(2)本节课你还有哪些问题?(学生活动)学生发言,互相补充。(教师活动)布置作业(1)书面作业:P70练习8.4.41、2题(2)实践调查:寻找圆与直线的关系在生活中的应用。设计意图通过让学生课本上的作业设置,基于本节课内容和学生的实际,对课后的书面作业分为三个层次,分别安排了基础巩固题、理解题和拓展探究题。使学生完成基本学习任务的同时,在知识拓展时起激学生探究的热情,让每一个不同层次的学生都可以获得成功的喜悦。
通过与学生讲解切线长定义,让学生在参与、合作中有一个猜想,再进一步提出更有挑战性的问题,能否用数学的方法加以证明。问题的解决,使学生既能解决新的问题,同时应用到全等、切线的性质等知识,同时三条辅助线中,两条运用切线性质添加、一条构造全等。证明后用较规范的语言归纳并不断完善。(3) 应用新知加深理解通过前面的学习学生们已经对切线长定理有了较深刻的了解。为了加深学生对定理的认识并培养学生的应用意识学习例1、例2。例1让学生自己独立完成,加深对切线长定理的理解,老师进行点评,对于例2,由师生共同分析完成,交进行示范板书。(4) 巩固与提高此训练题分为二个层次,目的在于巩固新学的定理,并将所学的定理应用到旧的知识体系中,使学生的知识体系得到补充和完善。(5) 归纳与小结通过小结,使知识成为系统帮助学生全面理解,掌握所学的知识。
5、课本练习:P129引导学生运用随机数表来模拟试验过程并给予解答。问题2:有四个阄,其中两个分别代表两件奖品,四个人按顺序依次抓阄来决定这两件奖品的归属,先抓的人中奖率一定大吗?教法:可组织学生用试验的方法来说明问题,对于试验的结果是有说服力的,很容易使学生相信摸奖的次序对中奖的概率没有影响。问题3:彩民甲研究了近几期这种体育彩票的中奖号码,发现数字06和08出现的次数最多,他认为,06和08是“幸运号码”,因此,他在所买的每一注彩票中都选上了06和08。你认为他这样做有道理吗?教法说明:要让学生看到试验方法对试验结果的影响:1、 因为开奖用的36个球是均匀的、无差别的,所以每个号码被选为中奖号码的可能性是一样的,不存在“幸运号码”。
教学过程我主要分为六部分:一、新课引入,二、探究新知 ,三、巩固新知,四、感悟收获,五、布置作业,六、板书设计 (一)、新课引入教师提问:一个直角三角形中,一个锐角正弦、余弦、正切值是怎么定义的? sinA如图在 Rt△ABC中,∠C=90°。(1)a、b、c三者之间的关系是 ,∠A+∠B= 。 (2)sinA=sinB= , cosB= ,tanB= 。 (3)若A=30°,则B(4)sinA和cosB有什么关系?____________________;【设计意图】回顾上节课所学的内容,便于后面教学的开展。 (二)、探究新知活动一、探索特殊角的三角函数,并填写课本表格[问题] 1、观察一副三角尺,其中有几个锐角?它们分别等于多少度? [问题] 2、sin30°等于多少呢?你是怎样得到的?与同伴交流. [问题] 3、cos30°等于多少?tan30°呢? [问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的? 1、特殊角的三角函数值表:
本节课的设计是以教学大纲和教材为依据,遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。本节课采用教具辅助教学,旨在呈现更直观的形象,提高学生的积极性和主动性,并提高课堂效率。2、学法研究“赠人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,通过基础练习、提高练习和拓展练习发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
第一道例题提示学生把地基看成一个几何图形,即正六边形,逐步引导学生完成例题的解答。例题1:有一个亭子它的地基是半径为4米的正六边形,求地基的周长和面积(精确到0.1平方米)。第二道例题,我让学生独立完成,我在下面巡视,个别辅导,同时我将关注不同层次学生对本节知识的理解、掌握程度,及时调整教学。最后,引导学生总结这一类问题的求解方法。这两道例题旨在将实际问题转化成数学问题,将多边形化归成三角形来解决,体现了化归思想的应用。(七)、课堂小结(1)学完这节课你有哪些收获?(八)布置作业:我针对学生素质的差异设计了有层次的训练题,留给学生课后自主探究,这样即使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
当然,在讨论的过程中,对个别学生要及时点拨利用相似三角形对应边的关系来求AD,至于S与x的关系式自然是水到渠成了。接着让同学们以小组为单位,派出代表展示自己的讨论成果。然后我进一步抛出重点问题3)这里S与x是一种什么函数关系?当x 取何值时,S的值最大?最大值是多少?这个例题和刚才的做一做非常相似。那么要求矩形的面积 就必须知道矩形的长和宽,通过学生的思考、讨论、大家都明白了S与x的关系一定是二次函数,要求面积的最大值,也就是求二次函数的最大值,这样就将实际问题转化为数学问题了.简单的小组交流过后,同学们争先恐后表达自己的观点:有的小组利用的是配方法,有的小组直接利用二次函数的顶点坐标求出了最大面积。 ,我及时的鼓励学生:大家真的很棒,老师为你们骄傲,请再接再厉。
【教学目标】1. 理解数列的通项公式的意义,能根据通项公式写出数列的任意一项,以及根据其前几项写出它的一个通项公式.2. 了解数列的递推公式,会根据数列的递推公式写出前几项.3.培养学生积极参与、大胆探索的精神,培养学生的观察、分析、归纳的能力.教学重点 数列的通项公式及其应用.教学难点 根据数列的前几项写出满足条件的数列的一个通项公式.教学方法 本节课主要采用例题解决法.通过列举实例,进一步研究数列的项与序号之间的关系.通过三类题目,使学生深刻理解数列通项公式的意义,为以后学习等差数列与等比数列打下基础.【教学过程】 环节教学内容师生互动设计意图导 入⒈数列的定义 按一定次序排列的一列数叫做数列. 注意:(1)数列中的数是按一定次序排列的; (2)同一个数在数列中可以重复出现. 2. 数列的一般形式 数列a1,a2,a3,…,an,…,可记作{ an }. 3. 数列的通项公式: 如果数列{ an }的第n项an与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. 教师引导学生复习. 为学生进一步理解通项公式,应用通项公式解决实际问题做好准备.
授课 日期 班级16高造价 课题: §6.3等比数列 教学目的要求: 1.理解等比数列的概念,能根据定义判断或证明一个数列是等比数列;2.探索并掌握等比数列的通项公式; 3.掌握等比数列前 n 项和公式及推导过程,能用公式求相关参数; 教学重点、难点:运用等比数列的通项公式求相关参数 授课方法: 任务驱动法 小组合作学习法 教学参考及教具(含多媒体教学设备): 《单招教学大纲》 授课执行情况及分析: 板书设计或授课提纲 §6.3等比数列 1.等比数列的概念 (学生板书区) 2. 等比数列的通项公式 3.等比数列的求和公式
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 8.3 两条直线的位置关系(二) *创设情境 兴趣导入 【问题】 平面内两条既不重合又不平行的直线肯定相交.如何求交点的坐标呢? 图8-12 介绍 质疑 引导 分析 了解 思考 启发 学生思考 *动脑思考 探索新知 如图8-12所示,两条相交直线的交点,既在上,又在上.所以的坐标是两条直线的方程的公共解.因此解两条直线的方程所组成的方程组,就可以得到两条直线交点的坐标. 观察图8-13,直线、相交于点P,如果不研究终边相同的角,共形成四个正角,分别为、、、,其中与,与为对顶角,而且. 图8-13 我们把两条直线相交所成的最小正角叫做这两条直线的夹角,记作. 规定,当两条直线平行或重合时,两条直线的夹角为零角,因此,两条直线夹角的取值范围为. 显然,在图8-13中,(或)是直线、的夹角,即. 当直线与直线的夹角为直角时称直线与直线垂直,记做.观察图8-14,显然,平行于轴的直线与平行于轴的直线垂直,即斜率为零的直线与斜率不存在的直线垂直. 图8-14 讲解 说明 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 思考 理解 思考 理解 记忆 带领 学生 分析 带领 学生 分析 引导 式启 发学 生得 出结 果
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 8.4 圆(二) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内直线与圆的位置关系有三种(如图8-21): (1)相离:无交点; (2)相切:仅有一个交点; (3)相交:有两个交点. 并且知道,直线与圆的位置关系,可以由圆心到直线的距离d与半径r的关系来判别(如图8-22): (1):直线与圆相离; (2):直线与圆相切; (3):直线与圆相交. 介绍 讲解 说明 质疑 引导 分析 了解 思考 思考 带领 学生 分析 启发 学生思考 0 15*动脑思考 探索新知 【新知识】 设圆的标准方程为 , 则圆心C(a,b)到直线的距离为 . 比较d与r的大小,就可以判断直线与圆的位置关系. 讲解 说明 引领 分析 思考 理解 带领 学生 分析 30*巩固知识 典型例题 【知识巩固】 例6 判断下列各直线与圆的位置关系: ⑴直线, 圆; ⑵直线,圆. 解 ⑴ 由方程知,圆C的半径,圆心为. 圆心C到直线的距离为 , 由于,故直线与圆相交. ⑵ 将方程化成圆的标准方程,得 . 因此,圆心为,半径.圆心C到直线的距离为 , 即由于,所以直线与圆相交. 【想一想】 你是否可以找到判断直线与圆的位置关系的其他方法? *例7 过点作圆的切线,试求切线方程. 分析 求切线方程的关键是求出切线的斜率.可以利用原点到切线的距离等于半径的条件来确定. 解 设所求切线的斜率为,则切线方程为 , 即 . 圆的标准方程为 , 所以圆心,半径. 图8-23 圆心到切线的距离为 , 由于圆心到切线的距离与半径相等,所以 , 解得 . 故所求切线方程(如图8-23)为 , 即 或. 说明 例题7中所使用的方法是待定系数法,在利用代数方法研究几何问题中有着广泛的应用. 【想一想】 能否利用“切线垂直于过切点的半径”的几何性质求出切线方程? 说明 强调 引领 讲解 说明 引领 讲解 说明 观察 思考 主动 求解 思考 主动 求解 通过例题进一步领会 注意 观察 学生 是否 理解 知识 点 50
尊敬的各位领导、老师,同学们:大家好!带着新年的欢乐气氛的余味,我们迈进了在本校的最后一个学期,冬日的严寒不能阻挡我们大家回校的渴望;初春的温暖激荡起我们新的学习热情。一年之计在于春,新的一年,我们又有新的目标,新的任务,新的进步,新的收获。 在此我首先代表全体同学向一直为我们默默耕耘、无私奉献的老师们致敬,感谢你们的辛勤工作、精心培育、谆谆教诲。祝老师们在新的一年里工作顺利,身体健康,阖家幸福,心想事成。能在初中学习和生活三年,我们感到非常的自豪和骄傲。因为在这里,“学案式”教学让我们的学习充满了活力,校领导的关心让我们如沐春风,老师的孜孜教导让我们受益终生,同学们的团结互助让我们有更多的勇气去面对挫折,幽雅整洁的校园环境给我们创设良好的学习氛围。能融入到这样的学习环境中,是我们每一个学生的幸运体现。新的一年开启新的希望,新的学期承载新的梦想。现在已进入三月,初一的同学们,是否还感到彷徨?只要你们感觉已经融入到初中学校这个温暖的大家庭中,相信你们一定会做得很棒,希望你们在以后的学习中不怕吃苦、不怕劳累、不怕磨难,以实际行动证明自己是最棒的。初二的同学们,你们是否还沉浸在无忧无虑、洒脱嬉闹的生活中呢?
国旗是国家的象征和标志,每一位公民都应当尊重和爱护国旗。下面是小编为大家推荐二年级国旗下讲话稿的内容,希望能够帮助到你,欢迎大家的阅读参考。二年级国旗下讲话稿:新学期致词 迈着轻盈的步伐,沐浴3月的阳光,在这播种的的季节里,我们又迎来了播种希望的新学年。也许,昨天的你拥有许多辉煌,但那已成为了一段甜蜜的回忆;也许,过去的你遇到无数挫折,但那已是几滴消失了的苦涩泪痕。让我们忘记从前的成功与失败,只把收获的宝贵经验与教训铭刻在心。正如面对一个盛着半杯水的杯子,悲观的人永远说它是半空的,而乐观的人则会说它是半满的。不同的心态决定了我们对待生活,对待学习的态度。新学年,换一种心态,学习生活将是一方艳阳天。业精于勤荒于嬉。同学们,我们要想取得好成绩,勤奋是必不可少的,也是最为重要的。鲁迅先生曾说过:“哪里有天才?我只是把别人喝咖啡的工夫都用在工作上了。”孔子晚年看《周易》时,穿书简的皮绳不知磨断了多少次!唐代诗人白居易幼年好学,勤奋不懈,年仅16岁就写出了“野火烧不尽,春风吹又生“的千古绝句。勤奋不一定会成功,但成功肯定以勤奋为基础。琅琅书声是我们献给太阳的礼赞,晶莹露珠是我们迎接日出的问候。不断追求心中的梦想,不断振奋克服困难的勇气和决心,经受风雨,勇往直前,只有这样,我们才能够响亮地回答:我们没有虚度时光。
1. 优生人数少,成绩不优优生人数少是我们年级的历史问题,但这不能成为20**年高考成绩不如人意的借口,因为老百姓不了解。高考不出好成绩,就难以让滦平人民满意,我们没有挡箭牌没有护身符,只有因地制宜,攻坚克难,提升优生比例,真正实现低进高出,优进杰出的办学追求!2. 个别教师消极抱怨情绪时有显现每个组织都有积极性高、任劳任怨的人,也有倦怠抱怨混日子的人,后一种人出现的原因,是思想定位问题:要么过分寻求绝对公平,稍有不平衡就会满腹牢骚;要么心浮气躁,希望工作立竿见影,努力一段时间没效果,就会垂头丧气。对公平,我们要心态平和,绝对公平是不实际的,相对公平是一定的;对成绩,我们要以坚韧的毅力提升业务能力,竹子四年长3厘米是在扎根,量变积累够了才能发生质变。
4、主旨 哪一联明确地点明全诗题旨?表达了作者的什么感情?试做分析 颈联。 菊花开在秋天,所以这 “ 丛菊 ” 回应了诗题中那个 “ 秋 ” 字。 “ 他日 ” 可以指过去也可以指未来,在这里是指过去。“丛菊两开”,指诗人于 765 年离开成都,原打算很快出峡,但这年留居云安,次年又留居夔州,见到丛菊开了两次,还未出峡,故对菊掉泪。秋菊两度盛开,使诗人再次洒下往日流过的眼泪。“开”字双关,一谓菊花开,又言泪眼随之开。此时他仍然滞留在他乡,他始终没有放弃回乡的打算。孤舟可以系住,使其不能泛诸中流,但诗人的心是系不住的。他的心早已越过江河,越过关山,飞到了长安。所以,一叶靠岸系绳的孤舟,始终都牵动着诗人的故园之思。这一联是全篇诗意所在。孤舟本来只能系住自己的行踪,却把诗人的思乡之心也牢牢地系住了,故见舟伤心,引出故园之思,表现出思乡之情的深沉浓烈和欲归不得的无奈与凄伤,为文章的主旨句。
3、培养幼儿爱听、会讲、能表演的学习能力和热爱祖国传统文化的美好情感。【活动准备】 1、“八仙”人物图片,“八仙过海”故事课件。 2、拐杖、萧、花篮等道具若干,《八仙过海》歌曲课件。 3、词卡“八仙过海,各显神通”。【活动过程】 1、播放歌曲“八仙过海”,让幼儿在优美的乐曲中坐好。 2、谈话引出八仙。 小朋友们好,谁能告诉老师:你都知道哪些神仙?嗯,小朋友们知道得真多,他们都会腾云驾雾,飞来飞去,还会很多变化。小朋友们喜欢神仙吗?接下来老师也给大家介绍几位神仙。” 3、出示“八仙”人物图片,了解“八仙”人物的典型特征。 向幼儿介绍“八仙”的名字,引导幼儿观察每位神仙的特征和他们手中拿的宝物,引导幼儿模仿一下他的神态,每介绍一位就让幼儿说出这是我们新认识的第几位神仙。
在第1环节基础上,再让同学认识到函数Y=2X-1的图象与方程2X-Y=1的对应关系,从而把两个方程组成方程组,让学生在理解二元一次方程与函数对应的基础上认识到方程组的解与交点坐标的对应关系,从而引出二元一次方程组的图象解法。3、例题训练,知识系统化通过书上的例1,用作图象的方法解方程组,让学生明白解题步骤与格式,从而规范理顺所学的图象法解方程组,例题由师生合作完成,由学生说老师写的方式。4、操作演练、形成技能让学生独立完成书P208随堂练习,给定时间,等多数学生完成后,实物投影其完成情况,并作出分析与评价。5、变式训练,延伸扩展通过让学生做收上P208的试一试,而后给一定时间相互交流,并请代表发言他的所悟,然而老师归纳总结,并让学生通过自已尝试与老师的点拔从“数”与“形”两个方面初步体会某些方程组的无解性,进一步发展学生数形结合的意识和能力。6、检测评价,课题作业
[设计说明]:只给出情景故事,感知了一个大数,这样还不能引起学生对大数的深刻认识,所以再给出宇宙星空中的这些大数,让学生读读、看看这些数,引起学生强烈的认知上的冲突,形成一种心理上的想读、想写的求知欲望。(二)、引出问题、探索新知在上面的例子中,我们遇到了几个很大的数,看起来、读起来、写起来都不方便,有没有简单的表示法呢?分以下步骤完成。1、回忆100 ,1000,10000,能写成10( )2、300=3×100=3×10( )3000=3×1000=3×10()30000=3×10000=3×10()3、再由学生完成上面4个例子中的数的表示。(学生对160 000 000 000这个数可能表示为、16×1010,教师要利用学生这种错误,强调a的范围)4、教师给出科学记数法表示:a×10( )(1≤a<10)。[设计说明]:通过层层递进的探究设计,启发学生成功地发现“科学记数法”的表示方法,同时又通过学生示错,让学生记住a的范围,体现了以学生为主的探究式教学。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。