x月xx日,新增设的“四流南路萍乡路”公交站(北向南)正式启用,本站停靠xx条公交线路,距离xx地铁站A出入口仅xx米,极大方便了市民换乘出行。市民刘女士每天都要带孙子乘坐地铁x号线去上兴趣班,她说:“以往没有这一站,我和孩子要顶着日头走xx多分钟,现在出门坐上公交车x分钟就到了。”xx运控股集团以着力满足人民群众的美好出行需求为重点,确定了“强化两网融合、优化公交线路、减少线网重复”的专项调研课题,在走访调研集团公交站点、路队、场站的基础上,结合考察一线城市公交企业学习体悟形成调研报告和创新举措清单,将“用心用情在公交主业打造‘美好出行’”列入民生项目清单,推进工作措施落实落地,已开通、调整、优化线路xx条,调整xx条线路首末车时间,调整站点xx处。
舶集团将理论学习与深刻领悟、深入实践在xx工作期间x次到舶集团考察调研的指示批示精神紧密结合,创新用好政文化特色资源,引领D员干部守住“根”与“魂”、找准“位”与“责”,推动真信、真用。港口集团将学习贯彻对xx、对港口建设和国资国企改革发展的重要指示批示精神与港口业务提质增效密切结合,活学、活用。我省国资国企还突出带着问题学、知行合一学,把ZT教育与当前全省上下正在扎实开展的“三争”行动紧密结合,与国资国企改革发展工作统一起来,以问题为导向,深入调查研究,攻克发展难题,力争解好“方程式”、寻求“最优解”,以高质量发展成效检验学习成果。问题是时代的声音。如何对标世界一流企业价值创造、如何落实好新一轮改革重组和专业化整合、如何进一步优化布局“四大经济”领域全省国资国企深入查找分析在贯彻新发展理念、积极服务和融入新发展格局、推动高质量发展、破解国资“监管难、难监管”中的问题短板及其根源,拿出切实管用的具体措施,真正把ZT教育与中心工作统一起来。
全省ZT教育开展以来,省委第二、第四巡回指导组认真贯彻中央部署和省委要求,牢牢把握督促指导工作的正确方向,紧扣主题主线,把握重点关键,高标准、严要求,扎实推动联系指导单位ZT教育不断向纵深发展。省委第x巡回指导组——开展“融入式”指导推动ZT教育见行见效“在这里上课效果怎么样?”“结课后可以拿到资格证书吗?”“后续你们的就业问题工会能否帮助解决?”近日,省委第x巡回指导组来到xx市xx区xx超市(西湖区新就业形态联合工会)调研,指导组成员与来到劳务超市进行月嫂培训的学员交流,了解联系指导单位省总工会二级机构运行情况。这是省委第x巡回指导组统筹自身建设和指导工作,推动ZT教育走深走实的生动实践。全省ZT教育开展以来,省委第x巡回指导组按照中央决策部署和省委工作要求,统筹理论学习、调查研究、推动发展和检视整改,指导省委组织部等xx家单位扎实开展ZT教育,取得积极成效。
(一)蓄水情况。据统计,我市多年平均水资源总量为13.4 亿立方米,人均水资源量为3452 立方米,高于全国人均水资源量2200 立方米的水平,全市依地形地势自然形成了东部、西部和 中部三个相对独立的水系,主要集中供水水源有大隆水库、半岭水库、福万-水源池水库和赤田 水库等五座水库。水资源呈现时空分布不均的特点:全年80%的降雨量集中在6~10 月,雨季 充裕、旱季紧张。三大水系,东西部丰富,中部相对匮乏。具体为:东部29.6%的人口、22.5%GDP, 占有39%的水资源;西部10.4%的人口、7.5%GDP,占有42.5%的水资源;中部60%的人口、70%GDP, 仅占有18.5%的水资源。截止2014 日,大隆水库、赤田水库、半岭水库、福万-水源池水库等5 座主要原水水库有效蓄水量为17586 万m3。在不考虑降雨的情况下,大隆水库水量充 沛,可保证2014 年全年供水;赤田水库、福万-水源池水库预计可供水至8月下旬;半岭水库预 计可供水至7 月下旬。
第一条 根据《中华人民共和国合同法》等法律、法规之规定,本着友好合作、互惠互利的原则,在平等自愿的基础上,通过甲、乙双方充分协商,特订立本投资合同。第二章 投资项目的基本情况第二条 在 引进下,乙方在 (开发区、工业园、中小企业创业基地)投资兴办 项目,主要生产经营 。乙方项目总投资为 万元/万港元/万美元,注册资本 万元/万港元/万美元,固定资产投资 万元/万港元/万美元(其中设备投资 万元/万港元/万美元,建设投资 万元/万港元/万美元)。该项目分 期投资建设,首期固定资产投资 万元/万港元/万美元,二期固定资产投资 万元/万港元/万美元,整个合同约定投资确保 年内完成。第三条 根据项目类别,乙方确保固定资产投资强度每亩不低于 万元,建筑容积率达到 以上,建筑系数达到 以上,预期效益 万元。
对于我们每个具体的人来说,“中国梦”的核心可以用三句话来概括即:实现自我,回馈社会,拥抱自然。无疑,这是一个人性化、可持续、符合中国价值观和文明特征的简洁公式。在追求个人自我实现的过程中,享受内心的平和,平衡,平静;在与社会的互动回馈中,找寻和谐,和睦,和顺的感觉和定位;在与自然环境的共生共存状态中,尊重自然,享受自然,保护自然。
(一)、出示“春天”的挂图,引起幼儿兴趣,引出课题。兴趣是幼儿主动参与活动的关键,开始部分我就以一个孩子们喜欢的角色吸引了他们,并且通过一个提问直接进入了课题:小朋友们仔细观察图上都有什么?谁能说说这幅美丽的景色描写的是哪个季节呢?(请幼儿讨论并说说)(二)、看课件,幼儿感受春雨的声音和小燕子给小朋友们带来的春天的礼物。此环节我运用了直观法和提问等方法,让幼儿感受春天的美丽的景色。提问1:小朋友们春天的天气是怎样的呀?你们喜欢下雨吗?那我们一起来欣赏歌曲“小雨沙沙”,孩子们会情不自禁的和我跳起舞来。提问2:小朋友们春天到了,谁从南方飞回来了?(小燕子)小燕子还给小朋友们送来了春天的礼物,你们想不想看一看呢?
1.举例说明什么时候用普查的方式获得数据较好,什么时候用抽样调查的方式获得数据较好?2、下列调查中分别采用了那些调查方式?⑴为了了解你们班同学的身高,对全班同学进行调查.⑵为了了解你们学校学生对新教材的喜好情况,对所有学号是5的倍数的同学进行调查。3、说明在以下问题中,总体、个体、样本各指什么?⑴为了考察一个学校的学生参加课外体育活动的情况,调查了其中20名学生每天参加课外体育活动的时间.⑵为了了解一批电池的寿命,从中抽取10只进行实验。⑶为了考察某公园一年中每天进园的人数,在其中的30天里对进园的人数进行了统计。通过本节课的学习,同学们有什么收获和疑问?1、基本概念:⑴.调查、普查、抽样调查.⑵.总体、个体、样本.2、何时采用普查、何时采用抽样调查,各有什么优缺点?
四、范例学习、理解领会例2 某校墙边有甲、乙两根木杆。已知乙木杆的高度为1.5m.(1)某一时刻甲木杆在阳光下的影子如图5-6所示,你能画出此时乙木杆的影子吗?(用线段表示影子)(2)在图中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在(2)的情况下,如果测得甲、乙木杆的影子长分别为1.24m和1m,那么你能求出甲木杆的高度吗?学生画图、 实验、观察、探索。五、随堂练习课本随堂练习 学生观察、画图、合作交流。六、课堂总结本节课通过各种实践活动,促进大家对内容的理解,本课内容,要体会物体在太阳光下形成的不同影子,在操作中观察不 同时刻影子的方向和大小变化特征。在同一时刻,物体的影子与它们的高度成比 例.
探索1:上节我们列出了与地毯的花边宽度有关的方程。地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花边的宽度x吗?(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
三、课堂检测:(一)、判断题(是一无二次方程的在括号内划“√”,不是一元二次方程的,在括号内划“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a为常数) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空题.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次项是__________,一次项是__________,常数项是__________.2.如果方程ax2+5=(x+2)(x-1)是关于x的一元二次方程,则a__________.3.关于x的方程(m-4)x2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m__________时,是一元一次方程。四、学习体会:五、课后作业
(4)议一议:频率与概率有什么区别和联系?随着重复实验次数的不断增加,频率的变化趋势如何?结论:从上面的试验可以看到:当重复实验的次数大量增加时,事件发 生的频率就稳定在相应的概率附近,因此,我们可以通过大量重复实验,用一个事件发生的频率来估计这一事件发生的概率。三、做一做:1.某运动员投篮5次, 投中4次,能否说该运动员投一次篮,投中的概率为4/5?为什么?2.回答下列问题:(1)抽检1000件衬衣,其中不合格的衬衣有2件,由 此估计抽1件衬衣合格的概率是多少?(2)1998年,在美国密歇根州汉诺城市的一个农场里出生了1头白色的小奶牛,据统计,平均出生1千万头牛才会有1头是白色的,由此估计出生一头奶牛为白色的概率为多少?
教学目标:1.能利用三角函数概念推导出特殊角的三角函数值.2.在探索特殊角的三角函数值的过程中体会数形结合思想.教学重点:特殊角30°、60°、45°的三角函数值.教学难点:灵活应用特殊角的三角函数值进行计算.☆ 预习导航 ☆一、链接:1.如图,用小写字母表示下列三角函数:sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三边长有什么特殊的数量关系?如果∠A=45°,那么三边长有什么特殊的数量关系?二、导读:仔细阅读课本内容后完成下面填空:
教学目标:1.知道二次函数与一元二次方程的联系,提高综合解决问题的能力.2.会求抛物线与坐标轴交点坐标,会结合函数图象求方程的根.教学重点:二次函数与一元二次方程的联系.预设难点:用二次函数与一元二次方程的关系综合解题.☆ 预习导航 ☆一、链接:1.画一次函数y=2x-3的图象并回答下列问题(1)求直线y=2x-3与x轴的交点坐标; (2)解方程2x-3=0(3)说出直线y=2x-3与x轴交点的横坐标和方程根的关系2.不解方程3x2-2x+4=0,此方程有 个根。二、导读画二次函数y= x2-5x+4的图象1.观察图象,抛物线与x轴的交点坐标是什么?2.求一元二次方程x2-5x+4=0的解。3.抛物线与x轴交点的横坐标与一元二次方程x2-5x+4=0的解有什么关系?(3)一元二次方程ax2+bx+c=0是二次函数y=ax2+bx+c当函数值y=0时的特殊情况.二次函数y=ax2+bx+c的图象与x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?
1.了解“两点之间,线段最短”.2.能借助尺、规等工具比较两条线段的大小,能用圆规作一条线段等于已知线段.3.了解线段的中点及线段的和、差、倍、分的意义,并能根据条件求出线段的长.一、情境导入爱护花草树木是我们每个人都应具备的优秀品质.从教学楼到图书馆,总有少数同学不走人行道而横穿草坪(如图),同学们,你觉得这样做对吗?为了解释这种现象,学习了下面的知识,你就会知道.二、合作探究探究点一:线段长度的计算【类型一】 根据线段的中点求线段的长如图,若线段AB=20cm,点C是线段AB上一点,M、N分别是线段AC、BC的中点.(1)求线段MN的长;(2)根据(1)中的计算过程和结果,设AB=a,其它条件不变,你能猜出MN的长度吗?请用简洁的话表达你发现的规律.
(1)请你用代数式表示水渠的横断面面积;(2)计算当a=3,b=1时,水渠的横断面面积.解析:(1)根据梯形面积=12(上底+下底)×高,即可用含有a、b的代数式表示水渠横断面面积;(2)把a=3、b=1带入到(1)中求出的代数式中,其结果即为水渠的横断面面积.解:(1)∵梯形面积=12(上底+下底)×高,∴水渠的横断面面积为:12(a+b)b(m2);(2)当a=3,b=1时水渠的横断面面积为12(3+1)×1=2(m2).方法总结:解答本题时需搞清下列几个问题:(1)题目中给出的是什么图形?(2)这种图形的面积公式是什么?(3)根据公式求图形的面积需要知道哪几个量?(4)这些量是否已知或能求出?搞清楚了这些问题,求解就水到渠成.三、板书设计教学过程中,应通过活动使学生感知代数式运算在判断和推理上的意义,增强学生学习数学的兴趣,培养学生积极的情感和态度,为进一步学习奠定坚实的基础.
解析:当截面与轴截面平行时,得到的截面的形状为长方形;当截面与轴截面斜交时,得到的截面的形状是椭圆;当截面与轴截面垂直时,得到的截面的形状是圆,所以截面的形状不可能是三角形.故选A.方法总结:用平面去截圆柱时,常见的截面有圆、椭圆、长方形、类似于梯形、类似于拱形等.探究点三:截圆锥问题一竖直平面经过圆锥的顶点截圆锥,所得到的截面形状与下图中相同的是()解析:经过圆锥顶点的平面与圆锥的侧面和底面截得的都是一条线.如图,由图可知得到的截面是一个等腰三角形.故选B.方法总结:用平面去截圆锥,截面的形状可能是三角形、圆、椭圆等.三、板书设计教学过程中,强调学生自主探索和合作交流,经历操作、抽象、归纳、积累等思维过程,从中获得数学知识与技能,发展空间观念和动手操作能力,同时升华学生的情感态度和价值观.
小明说:“我姐姐今年的年龄是我去年的年龄的2倍少6,”已知姐姐今年20岁,问小明今年几岁?若取小明今年为x岁,则依据下面的等量关系式列方程:姐姐今年的年龄=小明去年年龄的2倍-6.得2(x-1)-6=20.例5解方程-3(x+1)=9总结:根据乘法分配律和去括号法则(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号)去括号时要注意:1、 不要漏乘括号内的任何一项;2、若括号前面是“-”号,记住去括号后括号内各项都变号.习题训练:解方程,如课本P122练一练1,P113练一练2等.思维拓展,解简单的应用题,如课本P123练一练3或补充一些题,如含小括号、中括号、大括号的方程(这方面课本安排几乎没有,只限浅显问题,教师不必深究)
学习目标:1、知识与技能(1)会用字母、运算符号表示简单问题的规律,并能验证所探索的规律。(2)能综合所学知识解决实际问题和数学问题,发展学生应用数学的意识,培养学生的实践能力和创新意识。2、过程与方法(1)经历探索数量关系,运用符号表示规律,通过验算验证规律的过程。(2)在解决问题的过程中体验归纳、分析、猜想、抽象还有类比、转化等思维方法,发展学生抽象思维能力,培养学生良好的思维品质。3、情感、态度与价值观通过对实际问题中规律的探索,体验“从特殊到一般、再到特殊”的辩证思想,激发学生的探究热情和对数学的学习热情。学习重点:探索实际问题中蕴涵的关系和规律。学习难点:用字母、运算符号表示一般规律。学习过程:一、创景引入活动:出示一张月历,学生任意选出3×3方格框出的9个数,并计算出这9个数的和,告诉老师,老师就可以说出你所选的是哪9个数。
(1)该校被抽查的学生共有多少名?(2)现规定视力5.1及以上为合格,若被抽查年级共有600名学生,估计该年级在2015年有多少名学生视力合格.解析:由折线统计图可知2015年被抽取的学生人数,且扇形统计图中对应的A区所占的百分比已知,由此即可求出被抽查的学生人数;根据扇形统计图中C、D区所占的百分比,即可求出该年级在2015年有多少名学生视力合格.解:(1)该校被抽查的学生人数为80÷40%=200(人);(2)估计该年级在2015年视力合格的学生人数为600×(10%+20%)=180(人).方法总结:本题的解题技巧在于从两个统计图中获取正确的信息,并互相补充互相利用.例如求被抽查的学生人数时,由折线统计图可知2015年被抽取的学生人数是80人,与其相对应的是扇形统计图中的A区,而A区所占的百分比是40%,由此求出被抽查的学生人数为80÷40%=200(人).