摆上桌的是:一盘肥腴的整鸡,是蒸的,配有一碗汤;一盘风干猪肉片,切得有一厘米厚,肥的白、瘦的红,咸香气馋人;芹菜炒豆腐干,在盘子里堆得老高,还有一碗山药排骨汤。这一组粗、土、简、拙的农家菜品,就是小时候去乡下舅舅家里吃的啊,舅妈的厨艺,还比这要精细很多,哪会把肉片切得这么厚。
①马铃薯是菜还是粮?在1月6日举办的马铃薯主粮化发展战略研讨会上,丰富多彩的马铃薯主食制品令人大开眼界。马铃薯全粉占比40%的馒头、面包、马铃薯芝士蛋糕等,都颠覆着人们对马铃薯的认知。②农业部副部长在会上表示,要以科技创新引领马铃薯主粮化发展,推动形成马铃薯与谷物协调发展的新格局。据介绍,马铃薯有望成为稻米、小麦、玉米之外的第四大主粮作物。它的种植面积将逐步扩大到1.5亿亩,年产鲜薯增加2亿吨,折合粮食约为5000万吨。
中国邮政日前宣布开放全国5000个自提网点,任何一家快递公司发货,均可享受此服务。自提网点包括现有邮政自有网点和“无人值守”的智能快递柜。看似简单的自提系统开放,背后却是智能快递的大市场。企业、专家、主管部门等负责人均认为,智能快递已成为当前政府驱动快递满足消费和商业需求的重要手段。快递员将快递包裹送到置于小区的智能快递柜中,给收件人发送取件短信。收件人经过手机查询——输入密码——开门取件三个步骤,便可将一个快递包裹从智能快递柜中取出,抱回家去。这种方式越来越受到居民和快递员欢迎。中国快递协会常务副会长李惠德说,目前出现的一些智能快递柜,代表着未来中国快递业的发展方向——智能快递,即通过引入信息化、大数据等现代化手段,融合预测等方式,以更加便捷的智能设施(如智能快递柜)和手段满足高密度、高成本、高人力的现代快递工作,通过建设社区的“智能快递站”为消费者服务。
那天的晚饭、吴老师一直给我夹莱、夸我作丈修改得好,还说我各方面都有进步,下个学期能进班委会、我熟械地吃着饭、饭菜是什么味道却没留下一点印象,不知道为为什么,我高兴不起来。一个月后,学校在通告栏里用一整张红纸发布了喜报,庆祝我校学生第一次在全县小学文竞赛中获二等奖。全班都拉我去看,我那篇作文竟然真的得了奖。我死活都不肯去,小利说我脸都红了。害羞吗?当然不是,谦虚吗?更不是。可是第二天的全校表彰会、我就躲不过去了,那次大会本来是表彰上学期的优秀学生的,没想到,最后是隆重给我颁发作文二等奖,我想找个地缝钻进去都来及。在全校师生面前,我捧着大红面的获奖证书、奖品,却低着头,像犯了错误。校长亲自给我颁奖之后,还宣布本学期每周一的全校升旗仪式由我来领队。不知怎的,我突然放声大哭。吴老师带着在台下拼命鼓掌。大家都很感动,觉得我是真情流露,是激动。可是谁也不会相信,我真不激动,而是莫名其妙地羞愧难当。我觉得那篇作文跟我一点关系也没有,可是每个字又的确是我写的。那种感觉,我怎么也说不清楚。(选自《小小说选刊》2015年第3期)
①晶莹透明的露珠,落在枫叶上就会闪烁出红色;落到荷花上便会表现出生命的苍白。这是它在适应不同的环境时所表现出的状态。而正式这种因环境而改变的特点,才让我们看到了露珠多样的美。人,也和露珠一样,要学会适应。②仙人掌为了适应沙漠,将叶片变成刺,减少了水分的蒸发;蝴蝶为了适应环境,改变了体色,躲避了天敌,学会适应是一种策略和智谋,能让生活变得更加丰盈。③适应一种环境,可以在心灵深处打上鲜明的烙印。年幼的叶嘉莹生活在书香世家。在四合院里,她每天都能看到父亲和伯父在院子里大声吟唱诗词,听到母亲和伯母在房间里小声吟唱诗词。聪明伶俐的她,从小受到良好家庭氛围熏陶。这种环境,给了他创作的源泉,她也在适应的过程中,让心不断地飞翔,成为最漂亮的露珠——蜚声中外的学者。
现在很多年轻人喜欢晚睡晚起,生活毫无规律,早上都不怎么吃早餐。大量研究发现,经常不吃早餐会干扰食物钟,也会给健康造成影响。台湾研究发现,每周吃早饭次数低于一次的人,肥胖的几率更高;哈佛大学研究发现,不吃早餐的人患糖尿病的风险也更高;在儿童心血管健康方面的研究发现,长期不吃早餐还会增加罹患心血管疾病的风险。
首先是纬度。越往北桃花开得越迟,候鸟也来得越晚。值得指出的是物候现象南北差异的日数因季节的差别而不同。我国大陆性气候显著,冬冷夏热。冬季南北温度悬殊,夏季却相差不大。在春天,早春跟晚春也不相同。如在早春三四月间,南京桃花要比北京早开20天,但是到晚春五月初,南京刺槐开花只比北京早10天。所以在华北常感觉到春季短促,冬天结束,夏天就到了。
我大学毕业留在了三十里外的省城,其他兄弟几个则继承了母亲经商的天分,在县城营生,都已经与种地不相干了。我们有了足够的力量尽孝,劳碌了一辈子的母亲被各家抢着邀请,心安理得地享受赡养。但父亲一直拒绝我们的供奉,仿佛我们拿给他的吃穿用品,是偷来的抢来的。此外,他也不愿意和我们多交流。濉河中的卵石被父亲一块块地挖出,堆砌在河滩地的四周,圈起了一座“城池”。日晒雨淋,寒暑易节,他始终把自己圈在里面,像绣花一样走针引线。几乎到他去世,父亲都在努力表明他是在靠他的土地生活。
将口袋缝制在肘后,虽然拿东西也很不方便,但因在口袋里盛装的只能是些细小、轻便的贵重物品,加之袖子比较宽大,手伸到袖内口袋里取物,也还是可以轻易做到的。如:东晋时期的医学家葛洪广泛收集当时民间流传的用于常见病的处方后,编成《肘后备急方》。其书的名称就使用了“肘后”一词,意在表明书是放在肘后的口袋中,是可以随身携带、查阅的,具有应急救助的寓义。由此也说明,古人上衣中的口袋位置是在袖内的肘后。
(四)认真抓好林业灾害防控工作。一是保持森林防火平稳态势。出动宣传车辆300余次,发放森林防火、有害生物防治等宣传资料7000余份,AAA和抖音宣传森林防火投放60余万次,防火码APP应用率100%。开展野外火源治理及林区输配电设施火灾隐患排查8次,制止违规用火40余起,排查火灾隐患18处,均已整改,二是林业有害生物防治安全可控。开展5·12林草生物灾害防控宣传周活动。投入450万元开展美国白蛾飞机防治工作,共计作业面积40万亩,至6月6日,全部顺利完成。(五)壮大林业产业发展成果。一是抓住产业重点。重点发展林下种养殖和森林康养,目前已完成林下种植面积XX万亩,产值XX亿元;林下养殖面积XX万亩,产值XX亿元;森林景观利用5万亩,产值XX亿元。申报第九批省林业产业化龙头企业8家。
诚信是中华民族的传统美德,是做人的基本准则,也是社会道德和职业道德的基本规范,其要求与国际经济全球化、社会主义市场经济发展以及构建和谐社会主义的要求是一致的。本文是小编为大家整理的诚信教育国旗下讲话稿,仅供参考。诚信教育国旗下讲话稿篇一: 尊敬的各位领导,亲爱的老师、同学们:今天我演讲的题目是《诚实守信,踏实做人》。记得有人曾经这样说过:“这世上只有两种东西能引起人心深深的震动。一个是我们头上灿烂的星空,另一个是我们心中崇高的道德。”而今,我们仰望苍穹,天空仍然明朗,内心那些崇高的道德法则,有些却需要我们再次呼唤。诚信就是其中之一。晏殊是北宋时期著名的文学家和政治家,14岁被地方官作为“神童”推荐给朝廷。他本来可以不参加科举考试便能得到官职,但他没有这样做,而是毅然参加了考试。事情十分凑巧,那次的考试题目是他曾经做过的。这样,他不费力气就从上千名考生中脱颖而出。但晏殊并没有因此而洋洋自得,相反他在接受皇帝的复试时,把情况如实地告诉了皇帝。皇帝与大臣们商议后出了一道难度更大的题目,让晏殊当堂作文。结果,他的文章又得到了皇帝的夸奖。
1、落实教学常规,提高教学效率本学期采用导学案备课,要求教师要认真把握教材,研读教参,抓住重难点,结合我校学生的实际情况设计出适合本学科的导学案,课后还要写出教学反思,坚持认真备课,及时反思的备课制度。对于作业的设计与批改,要认真对待,每月要接受学校的检查,不仅次数要达标,对于作业的设计、批改情况、学生的书写等方面也要力求达到要求。
1、多与孩子交流,多关注孩子的学习,询问孩子在校的学习情况。要善于发现孩子学习上的进步,给予充分地肯定和表扬,并提出新的要求。2、多给孩子一点信心,做孩子成长的强有力的后盾。由于孩子的个体差异,免不了学生的成绩有好有坏,有的孩子由于不爱学习,甚至厌学,导致成绩差,我们应该适当的批评。但是孩子很努力,成绩却不理想,我们更应该给他信心,而不是一味的给他泼冷水。3、为了提高学生成绩,学校也想了很多办法:双基周过关考试,月考,上晚自习等4、家长要重视孩子品德方面的教育。孩子的一言一行,一举一动都要关注。先教孩子成人,后教孩子成才。我们班有几个男生自我约束力很差,在学校经常违规违纪:说谎话,拿别人东西,打架骂人,经常被老师抓住,甚至屡教不改。当然,老师也还有很多做的不够的地方,
活动准备: 1、猴子图片一个,一座大山,一棵大树,桃子若干。 2、各种小动物若干。(如:小鹿、小熊、小猫等。) 3、准备游戏时用的伞、床、桌子、椅子、蘑菇桌等物品。活动过程:1、以小猴找食物,导入活动。 瞧!是谁呀?(小猴子)小猴子肚子饿的咕咕叫,多想找些吃的来掂掂肚子呀!他走呀走,找呀找,看!他走到了什么地方?(小猴走到了山下面,要求幼儿把话说完整。)让我爬上山去看看有没有什么好吃的。小猴现在又在什么地方了呀?(小猴到了山的上面。)让我看看前面有没有什么好吃的?(有棵树,树上有桃子。)小猴要去摘桃子,先要干什么?(小猴先要走到山的下面。)(小猴再走到大树的下面。)桃子在哪儿呀?小猴能摘到桃子了吗?(不能)怎么办呢?(小猴子爬呀爬,爬到树上)摘个桃子吃饱了,咕噜咕噜滑下树。
【活动目标】1、引导幼儿认识物体与物体之间的空间位置关系。2、能够说出什么在什么的上面,什么在什么的下面。 【活动准备】1、球、苹果、玩具狗、各一个。2、各种玩具若干。 【活动过程】一、导入引导幼儿观察1、师:“小朋友们今天我带来了几位好朋友到我们班来做客,想和小朋友们一起玩游戏,你们看这是谁啊?(教师出示篮球一个)。还有一位好朋友它在和小朋友们捉迷藏呢!我们一起来找找看它在哪啊?到底是谁?咦!找到了,原来它藏在书下面啊!快出来跟我们小朋友打个招呼吧”!“小朋友们,你们好!我是你们最喜欢吃的苹果,很高兴和小朋友们一起玩。”
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。