提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

人教部编版道德与法制四年级下册当冲突发生说课稿

  • 小学学生社团管理制度(试行)

    小学学生社团管理制度(试行)

    2、社团招募方式。一般每学期初进行社团招新和人员调整,控制人数避免增加管理难度。坚持“自愿参加”和“双向选择”的原则,学生报名社团要先经家长同意。社团老师和成员一经确定,无特殊情况一学期内不再变更。 3、活动时间地点。各社团制定科学合理的活动计划,每天按计划坚持开展活动,并做好记录。活动时间为下午放学后的3:50-4:30,地点要相对固定。学校努力为社团活动的开展创造条件。各班主任要熟知本班参加各社团的学生名单和活动时间,并通过致家长一封信、短信、家长会等途径将学生参加的社团名称、辅导老师和活动时间告知家长。

  • 学生顶岗实习管理制度通用

    学生顶岗实习管理制度通用

    第一条:顶岗实习的主要目的是使学生把所学专业知识、专业技能,运用到实际工作中,锻炼提高工作能力。通过顶岗实习,全方位了解专业和职业,达到从业基本要求,实现就业零适应期。  第二条:顶岗实习原则上安排在最后一学年进行,实习时间一般不得少于半年。根据毕业顶岗单位(或用人单位)的实际,对顶岗实习时间进行适当调整,但一般应在最后一学年进行。  第二章  组织与领导  第三条:顶岗实习工作由系分级管理,分别成立相应的顶岗实习工作管理机构,负责顶岗实习工作的指导、管理和实施,保障顶岗实习工作的顺利进行。  第四条:由系教学办.学工办等负责全系顶岗实习工作的管理。主要职责是审核各班的顶岗实习工作计划;检查考核各班顶岗实习计划的落实情况、管理质量并提出整改意见和建议;组织全系顶岗实习工作经验交流;保证实习经费;研究解决顶岗实习管理中的问题;积极推动校企合作,协助我系联系和落实顶岗实习单位;督促、协助统一办理顶岗实习期间的学生安全保险;研究解决我系校外实习基地管理机构人员和聘请的实习单位技术骨干、能工巧匠等兼职指导教师的管理和报酬问题;着力推进以就业为目标的顶岗实习工作。

  • 组织部干部监督科上半年工作总结及下半年工作思路

    组织部干部监督科上半年工作总结及下半年工作思路

    加大专项检查人才队伍储备力度,注重培养候补专项检查组长,优胜劣汰,以老带新,形成良性循环,选优配强每一轮每一个专项检查组,紧紧围绕选人用人、县委中心工作严格进行检查,对发现的问题严肃问责,监督单位做好整改工作。三是狠抓预警研判,持之以恒的做好日常监督。积极推动与其他方面监督的深度融合,不断完善“大监督”工作格局,增强监督合力。在日常工作中注重问题的预警研判,把从严监督贯穿到干部教育培训、考核评价、选拔任用全过程。提高监督的主动性,抓早抓小,对发现的问题审慎进行组织处理,及时提醒,督促改进提高,防止小毛病演变成大问题。提高监督的自觉性,抓细抓严,做好常态化管理工作,堵塞漏洞、从严管理。提高监督的警觉性,抓关键抓落实,坚持部内部外的纵向横向联动,紧盯“一把手”、特殊单位、关键岗位,紧扣上级和县委部署的重要工作,围绕政策执行和工作落实情况开展监督。

  • 国旗下安全教育讲话:铭记责任 珍爱生命

    国旗下安全教育讲话:铭记责任 珍爱生命

    老师们、同学们:大家早上好,今天我讲话的题目是“铭记责任,珍爱生命”。对于每个人来说,生命都只有一次。注意安全,就是善待和珍惜生命的一种有效途径,也是对家庭和社会负责任的表现。而在现实生活中,并非人人都具有较高的安全意识。校园安全涉及到的安全隐患有20多种:如食物中毒、运动损伤、网络安全、交通事故、火灾火险、溺水、传染病等。据了解,我国每年约有万名中小学生非正常死亡:中小学生因安全事故、食物中毒、溺水、自杀等死亡的,平均每天有40多人。数字是枯燥的,但它的背后是一个个鲜活的生命。这说明校园安全形势非常严峻。但有关专家认为通过教育和预防,学生意外伤害事故是可以避免的。在这里向全校同学提出如下要求:一、树立自我安全意识。我们要有高度的安全意识、文明意识,要时时想安全,事事讲安全,树立自我安全意识,让安全走进我们的生活,充分认识到安全工作的重要性和紧迫性。各班同学要协助班主任对本班教室里的各种教学设施、用电设备、住宿设施进行一次安全隐患的排查,若发现问题,请及时向班主任汇报,防患于未然。

  • 安全教育日国旗下讲话:珍爱生命,远离危险

    安全教育日国旗下讲话:珍爱生命,远离危险

    安全教育日国旗下讲话:珍爱生命,远离危险老师们,同学们:阳春三月是万物复苏的美好季节,我们一定会记得3月有很多纪念日: 3月5日是“向雷锋学习”纪念日,3月8日是国际妇女节,3月12日是我国植树节,3月15日是国际消费者权益日。可今天是什么纪念日,可能大家都不太熟悉,但是对“质量重于泰山,安全高于一切”这句话我们应该耳熟能详。今天是全国中小学生“安全教育日”!1996年2月,国家教委、公安部等六部委根据造成安全伤亡的主因是安全事故,联合发出通知,把每年3月最后一周的星期一定为全国中小学生安全教育日。校园安全与我校师生密切相关,因此,我们要时刻牢记:1、有序上下楼。在课间不互相追逐打闹,上下楼梯不要拥挤,要注意礼让并靠右慢行。严禁在楼梯的扶手栏杆上向下直滑或在楼梯上追逐奔跑,严禁攀爬栏杆、围墙、下水管道、树木、窗户等。

  • 3月28日国旗下讲话:全国中小学生安全教育日

    3月28日国旗下讲话:全国中小学生安全教育日

    同学们:早上好当你每天背着书包上学时,看到过指示行人过马路的斑马线吗?当你走到路口,看到过为安全站岗的红绿灯吗?当你乘坐火车、汽车时,听到过“为了您的安全,请不要把头、手伸出窗外”的热情关照吗?在我们记事时,就常听爸爸妈妈说“干什么事,都要注意安全”;走进校门,老师也教我们要注意安全;识字以后,在工地、路口等危险的地方都看到过“请注意安全”、“安全第一”的牌子。安全是我们生活中永恒的主题!只有一生平安,才有美好未来。根据国家教育部规定,从1996年起,每年三月的最后一周的星期一为全国中小学生安全教育日, 今天是全国第十五个校园安全教育日。今年的教育主题是“加强疏散演练确保学生平安”。5月12日四川汶川大地震惊醒了世人,这场灾难夺去了整整几万人的生命。在这场灾难中多少家庭支离破碎,多少亲人生死离别。也许有些同学说地震毕竟发生的概率小,那么我就说说我们身边最近发生的一些事吧。

  • 幼儿园中班安全教案:不跟陌生人走

    幼儿园中班安全教案:不跟陌生人走

    2、培养幼儿思考问题、解决问题的能力及快速应答能力。 3、引导幼儿了解一些自我保护的常识,知道不能轻信陌生人的话,不跟陌生人走。[活动准备] 1、排练情景表演:小红没上当。 2、录制有关轻信陌生人上当受骗的内容。如:自己在家时随便给陌生人开门,随便吃陌生人给的食物,在公共场所迷路了随便跟陌生人走等造成不良后果,选择适合幼儿看的有关打击拐卖儿童的记录片。[活动过程]一、请幼儿观看情景表演“小红没上当”,教师在主要部分给以提示。

  • 点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.

  • 两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.

  • 两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]

  • 两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圆的标准方程教学设计人教A版高中数学选择性必修第一册

    圆的标准方程教学设计人教A版高中数学选择性必修第一册

    (1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.

  • 圆的一般方程教学设计人教A版高中数学选择性必修第一册

    圆的一般方程教学设计人教A版高中数学选择性必修第一册

    情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);

  • 直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.

  • 直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 空间向量基本定理教学设计人教A版高中数学选择性必修第一册

    空间向量基本定理教学设计人教A版高中数学选择性必修第一册

    反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.

  • 直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).

  • 人教版高中地理必修2不同等级城市的服务功能教案

    人教版高中地理必修2不同等级城市的服务功能教案

    1、 前提条件:①环境几乎一样的平原地区,人口分布均匀2、 ②区域的运输条件一致,影响运输的惟一因素是距离。城市六边形服务范围形成过程。(理解)a.当某一货物的供应点只有少数几个时,为了避免竞争、获取最大利润,供应点的距离不会太近,它们的服务范围都是圆形的。 b.在利润的吸引下,不断有新的供应点出现,原有的服务范围会因此而缩小。这时,该货物的供应处于饱和。每个供应点的服务范围仍是圆形的,并彼此相切c.如果每个供应点的服务范围都是圆形相切却不重叠的话,圆与圆之间就会存在空白区。这里的消费者如果都选择最近的供应点来寻求服务的话,空白区又可以分割咸三部分,分别属于三个离其最近的供应点。[思考]①图2.15中城市有几个等级?②找出表示每一等级六边形服务范围的线条颜色?③叙述不同等级城市之间服务范围及其相互关系?3、理论基础:德国南部城市4、意义:运用这种理论来指导区域规划、城市建设和商业网点的布局。1、 应用——“荷兰圩田居民点的设置”。

  • 人教版高中地理必修2不同等级城市的服务功能精品教案

    人教版高中地理必修2不同等级城市的服务功能精品教案

    学生探究案例:找出不同等级城市的数目与城镇级别的关系、城镇的分布与城镇级别的关系并试着解释原因。在此基础上,指导学生一步步阅读书上的阅读材料,首先说明这是德国著名的经济地理学家克里斯泰勒对德国南部城市等级体系研究得出的中心地理论,他是在假设土壤肥力相等、资源分布均匀、没有边界的平原上,交通条件一致、消费者收入及需求一致、人们就近购买货物和服务的情况下得出的理想模式。然后指导学生阅读图2.14下文字说明,理解城市六边形服务范围形成过程。指导学生读图2.15,找出图中城市的等级、每一等级六边形服务范围并叙述不同等级城市之间服务范围及其相互关系,从而得出不同等级城市的空间分布规律,六边形服务范围,层层嵌套的理论模式。给出荷兰圩田空白图,让学生应用上面的理论规划设计居民点并说出理由,再和教材上的规划进行对照。然后给出长三角地区城市分布图和各城市人口数,让学生对这些城市进行分级,概括每一级城市的服务功能、统计每一等级城市的数目以及彼此间的平均距离,总结城市等级与服务范围、空间分布的关系?

  • 班级纪律管理发言

    班级纪律管理发言

    第一、严格遵守学校的各项规章制度。  俗话说,“没有规矩,不成方圆”,这个“规矩”就是纪律。我们知道,良好的纪律是学好科学文化知识的保障。  在一个有良好的校风、班风的环境中,必然受到良好学风的熏陶。一个纪律泛散的集体,不可能有良好的学风,学习也就得不到保证。因此,好的环境,好的秩序,必须靠健全严明的规章制度和纪律来维持。  作为一名学生,要严格遵守学校各项规章制度,切实做到:尊师爱友,自强自律;诚实守法,文明礼貌;遵守公德,爱护公物。

上一页123...277278279280281282283284285286287288下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。