新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
我们知道数列是一种特殊的函数,在函数的研究中,我们在理解了函数的一般概念,了解了函数变化规律的研究内容(如单调性,奇偶性等)后,通过研究基本初等函数不仅加深了对函数的理解,而且掌握了幂函数,指数函数,对数函数,三角函数等非常有用的函数模型。类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规律的数列,建立它们的通项公式和前n项和公式,并应用它们解决实际问题和数学问题,从中感受数学模型的现实意义与应用,下面,我们从一类取值规律比较简单的数列入手。新知探究1.北京天坛圜丘坛,的地面有十板布置,最中间是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的示板数依次为9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型号的女装上对应的尺码分别是38,40,42,44,46,48 ②3.测量某地垂直地面方向上海拔500米以下的大气温度,得到从距离地面20米起每升高100米处的大气温度(单位℃)依次为25,24,23,22,21 ③
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
活动准备:教具:大的点点比较图三张,方格纸,数字(1—9),符号“〈”“〉”。学具:“大嘴巴比多少”(2组12套),每个幼儿2张,每张作业上包括点点比较图和方格纸;符号“〈”“〉”;水彩笔6支;印台每组2个,数字章1—9。配组学具:回形针拼图形(1组);数字脸谱连线(1组);大嘴巴比多少(1组提高型)。 活动过程:一、玩游戏,复习有关数量关系1.玩拍手数数游戏(1—20):集体。2.序数游戏(1—10的接数):集体、小组、个别。3.根据点卡上的点子数做动作:集体、个别。
居里夫人看到了自己的小学教师——西科尔斯卡,便抑制不住激动的心情,飞快地向老师走去,给老师一个热情的拥抱。居里夫人毫不在意老师衣着简单朴素,兴高采烈地把老师介绍给大家,并与与会者一起为老师鼓掌。居里夫人的言行举止,成为世界教育史上一段不朽的佳话。古人曾说:“师者,所以传道授业解惑也。”一个人无论学问有多深,地位有多高,成就有多大,都应该感恩曾经悉心教导我们的老师。让我们怀着一颗感恩的心,感恩教师,让感恩的情怀在校园里蔚然成风。我的讲话完毕,谢谢大家!
活动准备: 教具:5、6、7、8、9、10的实物卡片共6张。 学具:幼儿用书,铅笔每人一份。 活动过程: 1、集体活动。 (1)目测数群,感知10以内的数。 教师分别出示实物卡片,引导幼儿观察图片,说一说:图片上有什么?有多少?L你是怎么看出来的?教师带领幼儿一一点数,并说出物体的总是。 (2)学习按群测数。 教师启发幼儿用“合起来”的方法说出总数,想一想:还可以用什么方法很快能知道有多少个x x?说一说:你们觉得这几种方法,哪一种方法最快?为什么?组织幼儿讨论得出结论。 教师带领幼儿看5的实物卡片,启发幼儿用“合起来”的方法说出总数。教师引导幼儿观察6——7的实物卡片,鼓励幼儿自己用这种办法说出总数。教师借助手势,启发幼儿用手画圈表示总数。
说课内容:我说课的内容是人教版小学数学一年级上册第五单元、第三课时、6、7的加减法应用。我将从教材分析,教学目标分析,教学重难点及突破方法,教学流程设计,4个方面来进行说课。一、说教材:1、内容:本节课是在学生学习6、7加减法的基础上展开教学的,教材第一次出现用情景图呈现数学问题的形式,呈现了一个简单求和求差的数学问题,使学生明确、知道两个相关的信息和一个相关的问题,就构成了一个简单的数学问题。2、地位:从整个知识网络来看,它也标志着数学应用题数学的开始,是向后面的文字应用题过度的桥梁。二、说教学目标通过对教材的分析,确立了如下教学目标:1.通过学习使学生认识理解大括号和问号的意义,能借助图画正确分析题意。2.会用6和7的加减法解决生活中简单问题,使学生切实感受到用学过的数学知识去解决简单的实际问题的过程。3.初步感受数学与日常生活的密切联系,体验学数学、用数学的乐趣。
一、说教材1.教学内容:义务教育课程标准实验教科书人教版小学数学一年级上册57页及相关的练习题。2.教材的地位和作用:这节课是人教版小学数学一年级上册第五单元第57页的内容,是在学了6、7加减法中的用数学:金色的秋天后进行教学的。大家知道,新教材中的“用数学”,类似于老教材中的应用题。通过“用数学”教学,既要求学生找到问题的答案,又要求学生在解决问题的过程中,掌握数量关系和应用题的结构特征,为学习更复杂的应用题打好基础。3.教学目标:(1)知识目标:使学生能够正确掌握算理,能根据已知量和问号之间的关系选择合适的计算方法列式计算。(2)能力目标:培养和提高学生用所学知识解决实际问题的能力。(3)情感目标:让学生体验学数学,用数学的乐趣,在学习中感受到热爱自然保护环境方面的教育。4.教学重点:让学生用学过的知识解决简单的实际问题。5.教学难点:学生学会选择解决问题的方法。
“用计算器计算”是江苏国标版四年级上册数学第十一单元的教学内容这部分内容是在学生熟练掌握了整数的四则计算法则及两步混合运算的基础上进行教学。通过学习使学生可以借助计算器进行较大数目的四则运算并借助计算器来探索有关规律有利于帮助学生形成初步的探索和解决问题的能力。 本单元内容分两段安排,第一段先认识计算器了解计算器的基本功能和操作方法再学习用计算器进行四则计算的方法。第二段教学用计算器进行两步混合运算并安排了练习十。教材在“想想做做”和练习十中还编排了一些探索数学规律的趣题并通过“你知道吗”介绍“改错键”等常用的功能键以及有关计算工具发展的历史让学生了解计算工具的演变过程感受人类科技的进步与发展。最后教材还安排了实践活动《一亿有多大》帮助学生形成良好的数感。本单元分四课时完成今天我说的是第一课时。
一、说教材《笔算不进位乘法》是在学生学会表内乘法,整十、整百数乘一位数的口算、万以内加减法的基础上进行编排的教学内容。教材根据学生已有的基础,来引领学生推导出笔算的方法,并联系实际情景,使学生深刻的体会到多位数乘一位数在现实生活中的应用。同时,本节课也为学生继续学习《笔算进位乘法》提供了算理依据和算法模型。因此,本课时的内容在本单元中占据重要的地位。结合教材分析,我确立了以下的教学目标:教学目标:使学生学会乘法竖式的书写格式,理解笔算乘法的算理,掌握笔算乘法的计算方法。过程与方法中,让学生经历多位数乘一位数(不进位)的计算过程,体验计算方法的多样化。使学生在学习活动中获得成功,体验学习数学的乐趣。教学重、难点:使学生掌握多位数乘一位数的笔算方法及乘法竖式书写格式。理解多位数乘一位数的笔算算理。
一、教学内容:人教版小学数学四年级上册第23~25页全部内容二、编写意图:“计算工具的认识”分别介绍了计算工具算盘和计算器,还安排了有关计具的发展历史和现状的阅读材料。教材安排了较多的直观图战士了算盘和计算器的实际应用、算盘和计算器的结构,比较形象直观,让学生在观察和活动中认识常用的计算工具。三、教学目标:鉴于以上分析,我把本课的教学目标定位为以下三个方面:1.让生初步认识计算器,了解计算器的基本功能,会使用计算器进行大数目的计算,通过计算探索发现一些简单的数学规律,解决一些简单的实际问题。2.通过对计算器的运用,体验用计算器进行计算的优点,进一步培养对数学学习的兴趣,感受用计算器计算在人类生活和工作中的价值。3.在自主探究的学习过程中培养学生的问题意识和创新意识,在解决实际问题中,渗透节约、环保等方面意识,使学生受到思想教育。
(一)情境导入以鲜明的色彩、生动的画面演绎激光从地球发送到月球的全过程,既引出了学过的线段,又激发学生探究新知的欲望。(二) 质疑探究在讲授新课的过程中,我选择了多媒体的教学手段。这些教学手段的运用可以使抽象的知识具体化,枯燥的知识生动化,乏味的知识兴趣化。1、认识线段。通过多媒体演绎,使学生对于抽象的“线段”的认识建立在具体的生活模型基础上,有助于学生认识图形特征,形成表象,感受生活中处处有数学。这一环节主要引导学生回顾所学的线段知识,通过画图、说特征、举例子、讲授字母表示法这一系列活动,使学生进一步认识线段。2、 认识射线。多媒体课件形象、生动地演示了激光在宇宙中不断延长,再延长,通过直观感知,在头脑中建立“无限延长”的表象,帮助学生理解“无限延长”的含义。通过教师引导和小组合作,共同学习射线的画法、特征及字母表示法,进而把所学知识还原到生活当中,让学生明确数学与生活紧密联系。
一、说教材1、教材所处的地位和作用:《比的基本性质》是小学数学人教版六年级上册第三单元第三小节比和比的应用的第二课时。它是在学生学习商不变性质、分数的基本性质、比的意义、比和除法的关系、比和分数的关系的基础上组织教学的。比的基本性质是一节概念课的教学,它跟分数的基本性质、商不变性质实际上是同一道理的。所以本节课主要是处理新旧知识间的联系,在巩固旧知识的基础上进入到学习新知识。教材内容渗透着事物之间是普遍联系和互相转化的辩证唯物主义观点。学生理解并掌握比的基本性质,不但能加深对商不变性质、分数的基本性质、比的意义、比和分数、比和除法等知识的理解与掌握,而且也为以后学习比的应用,比例知识,正、反比例打好基础。
一、教材分析本课是人教版3年级上册数学第3单元的第1课时,本课内容是在学习了长度单位米和厘米的基础上进行教学的,通过学习,使学生对常用的长度单位有一个比较完整的认识,对于今后学习面积单位和体积单位,发展学生的空间观念具有重要意义。二、教学目标:根据对教材的理解,同时结合学生已有的认知结构和心理特征,制定如下教学目标:(1)、知识目标:认识长度单位毫米和分米, 初步建立1毫米和1分米的长度观念;知道1分米=10厘米,1厘米=10毫米,1米=10分米,并能进行长度单位间的简单换算。(2)、能力目标:通过估一估、量一量等活动,培养和发展学生的空间观念、估测能力、动手操作能力和推理能力。(3)、情感目标:经历实际测量的过程,体会长度单位在日常生活中的应用,感受数学和生活的密切联系,体验数学学习的乐趣。
XXX软件有限公司 / 教研组201x.09 - 202x.06实习老师1. 协助班主任管理班级,组织班级活动(组织班会及课外活动);2. 出现问题时,及时与学生任课老师,班主任及家长沟通解决问题3. 担任学生班主任,负责五年级xx余名学生的生活与学习4. 担任「公司/组织」实验班班实习班主任,在实习中深入了解高中生的学习情况和生活状态;5. 担任实习班主任具有良好的组织能力和领导能力,组织了班级的秋冬季运动会入场等相关活动。6. 作为艺考生的班主任在「日期/时间」工作中与他们一起学习并检查他们播音发声以及xx背诵在「日期/时间」会教他们播音的基础发声以及练习有着比较丰富的工作经验
竺可桢(1890--1974),浙江上虞人。气象学家、地理学家、教育家。中国近代地理学和气象学的奠基者。领导创建了我国第一个气象研究所和首批气象台站,并在台风、季风、气候变迁、农业气候、物候、自然区划等方面有开拓性的研究。创建了我国第一个地学系,成为当时培养地学英才的摇篮。以求实精神领导浙江大学工作,培育了多方面的人才。长期领导中国科学院工作,积极倡导并组织和参加中国地学、生物学、天文学、自然资源综合考察及自然科学史研究等多方面工作,主编了《中国自然区划》、《中国自然地理》等丛书,是我国地理学和气象学界的一代宗师。
1、诗作引雁:同学们,有一种鸟,常常是文人墨客吟诗赋词入题的最爱,这种鸟很容易牵动人们的羁旅情思,令人睹鸟伤情、托鸟寄怀,从而留下许多浪漫、感人、富有诗意的作品,这种鸟就是秋寒南征、春暖北归的大雁。现在就让我们在这优美而略带忧伤情感的音乐中,一起回忆我们学过的有关大雁的优美诗句。学生汇报,教师展示。 征蓬出汉塞,归雁入胡天。——王维《使至塞上》 长风万里送秋雁,对此可以酣高楼。——李白《宣州谢眺楼饯别校书叔云》 乡书何处达?归雁洛阳边。——王湾《次北固山下》(思乡情怀) 塞下秋来风景异,衡阳雁去无留意。——范仲淹《渔家傲》 云中谁寄锦书来,雁字回时,月满西楼。—— 李清照《一剪梅》 2、引入课题:由此可见,中国人眼中的大雁是这样的富有诗情画意,是这样的充满浪漫色彩。那你想不想知道,外国人心中的大雁是怎样的吗?今天,就让我们跟随美国生态学家利奥波德一同走进大雁的世界。请大家打开课本111页,第十四课,大雁归来(出示课题和作者)
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。