1.动物园里举行运动会,小动物可高兴了,你瞧,他们排着整齐的队伍走出来了。老师分步出示图片,让学生观察,你发现了什么?第一步逐一贴出图片;小熊、兔子、猴子、青蛙;第二步逐一贴出图片:兔子、猴子、青蛙、小熊;第三步逐一贴出图片:猴子、青蛙、小熊、兔子;第四步怎样贴呢,学生试贴:青蛙、小熊、兔子、猴子。教师:为什么这样贴呢?说出你的理由。2.观察整幅方阵图,你们发现了什么?3.请四个学生上台问及此事,做类似方阵图中动物的排列,四位同学不停的变换位置。(体会其中循环排列的含义)教师:深入观察,你们还发现了什么?教师:刚才同学们用自己的语言形容出其中的排列规律;我们可以说这种排列方式是循环排列的规律。4.小东家搞装修,房子是怎样布置的呢?我们一起参观参观,有什么规律呢?学生讨论讲解:墙面与地面都是循环排列的规律。
教学目标1.使学生通过“称一称”的实践活动,亲自感受1克和1千克的实际重量。2.通过实践活动使学生加深质量单位的理解,让学生深刻体会到质量单位与实际生活是紧密联系的,在实际生活中是非常有用的。3.培养学生的动手能力及创新意识。4.培养学生与他人的合作意识和分工合作的精神。重、难点与关键1.进一步了解克和千克的质量单位概念。能够用老师提供的称,来称量物体质量。2.巩固对质量单位实际概念是认识。教具准备天平,盘秤,适量的生活用品,如水果,蔬菜等。教学过程一、创设情境同学们这节课老师带你们去超市逛一逛,想去吗?(出示课本第85页情境图)在超市里你看到了什么?指名回答。(饼干110克、豆油5千克、6个苹果1千克……)这些都表示什么意思呢?指名回答。教师说明表示物品有多重可以用克和千克作单位。那么在日常生活中有什么地方用到克与千克呢?举例说明。
一、游戏活动激趣,认识对称物体1、游戏“猜一猜”:课件依次出示“剪刀、扫帚、飞机、梳子”的一部分,分男、女生猜。2、认识对称物体:1)师质疑:为什么女生猜得又快又准呢?2)小结:像这样两边形状、大小都完全相同的物体,我们就说它是对称物体。(板书:对称)二、猜想验证新知,认识轴对称图形(一)初步感知对称图形1、将“剪刀、飞机、扇子”等对称物体抽象出平面图形,让学生观察,这些平面图形还是不是对称的。2、师小结:像这样的图形,叫做对称图形。(板书:图形)(二)猜想验证对称图形1、猜一猜:出示“梯形、平行四边形、圆形、燕尾箭头”等平面图形,让学生观察。师:这些平面图形是不是对称图形?怎样证明它们是不是对称图形?
一、复习导入1、口答:最大的一位数是几?最小的两位数是多少?这两个数相差多少?2、数数:10个10个地数,从10数到100; 1个1个地数,从91数到99; 问:99加1是多少?3、导入:你会从100开始接着往后数吗?今天开始我们将要学习更大的数,下面请你们观察这幅图。二、讲授新课1、出示主题图。(1)观察这幅图,说一说画面上正在发生什么事情?(2)看着画面你想知道什么问题?引导学生估算画面上的体育馆大约能坐多少人?2、板书课题:1000以内数的认识。3、教学例1。(1)数一数。每人数出10个小方块,说说你是怎么数的?板书:一个一个地数,10个一是十。
1、教学主题图。(1)让学生独立观察教材情境图。思考问题:[1]这幅画面是什么地方?[2]你发现了画面中有什么活动内容?(按顺序)(2)在小组中互相说一说自己观察到了什么内容。你想到了什么?(3)各组代表汇报。(4)教师板书学生汇报的数据。[1]这是某个校园里的活动情景图。从图中发现了教学大楼前面的两树之间都插着4面不同颜色的旗子,升旗台上也飘着一面国旗。[2]运动场上每4人一组小朋友在跳绳。[3]篮球场上每5人一组准备打篮球比赛。[4]板报下面摆的花是每3盆摆一组,旁边还有很多盆花。(5)根据上面的信息(条件),想一想能提出用除法计算的问题吗?大家在小组议一议。
四、说教法学法:本课主要采用知识迁移法、直观教学法、引导发现法来教学。课上先复习整数乘分数,通过已掌握的整数乘分数的意义就是表示一个数的几分之几是多少利用知识迁移规律自然引出1的是1×,1111的就是×,从而得出分数乘分数的意义同整数乘分数一样,都表示22221212一个数的几分之几是多少;结合多媒体直观演示,进一步帮助学生理解。在探讨计算结果时,让学生动手折一折,涂一涂,再借助图形语言动态直观演示,帮助学生梳理思维,同时也加深了学生对知识的理解。在方法的总结上,通过学生对几个算式的观察,引导学生发现分数乘分数就用分子相乘的积作分子,分母相乘的积作分母。本节课学生则主要通过自主探究、合作交流、练习的方法理解并掌握分数乘分数的意义及计算方法。五、说教学准备:教师准备多媒体课件、折纸。学生在操作手中有时会产生分歧或者折不出,课件的动态演示,会有力促进学生的模型建立。
[此环节的设计意图是利用情景激发学生探究的欲望,让学生带着轻松、愉悦的心情投入到新知的学习中。](二)自主探究感悟新知教育心理学告诉我们,学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。(在儿童的学习活动中,兴趣起着定向和动力功能的双重作用。)以这一理论为指导,我设计了以下三个层次渐深的活动,大胆放手让学生自主探究,从而突出重点、突破难点。活动一:理解分数乘整数的意义。让学生通过折一折的活动自主计算,并归纳整理出学生的三计算方法:①根据分数的意义数一数是3/5;②加法计算1/5+1/5+1/5=3/5;③乘法计算3*1/5=3/5,展示在黑板上,引导学生通过观察对比发现,其实3*1/5就是3个1/5相加,由此感知到分数乘整数的意义与整数乘法的意义相同,只是这里的相同加数变成了分数。
(四)、巩固练习1.操场上打篮球的有4人,打篮球的人数是踢足球的 ,踢足球的有多少人?2.踢毽子的人数是踢足球人数的 ,踢毽子的有多少人?引导学生找出等量关系式,然后再解答。指名板演。3.某月双休日共有9天,是这个月总天数的 ,这个月有多少天?(课件展示完整过程)(五)、课堂小结,整理内化1.我们这节课学习了用方程解决一类分数除法应用题的方法,你能来总结一下这类方法的一般步骤吗?(师生回顾解决问题的步骤并总结)2.课件展示一般步骤:用方程解答分数除法应用题的一般步骤:(1)分析题意,判断单位“1”(即“总量”)。(2)写出等量关系式。(3)设未知数,列出方程。(4)解方程。(5)写答语并检验。(六)、作业:30页2、3题
二、学情分析本单元是在学生已经学习了整数除法、分数乘法的基础上进行教学的,是小学阶段四则运算中最后一部分的内容。学生学习了整数、小数的四则运算,而分数只学习了加法、减法和乘法,因此对于学习分数除法有一定的认知需求,安排分数除法教学符合学生的认知发展特点。通过整数除法、分数乘法的学习,学生对计算的学习有一定的经验,并具有一定的解决问题的能力,这时候进行分数除法教学,学生有能力将原有的计算方法和经验进行迁移。学生在学习分数乘法时,已经掌握了一些解决分数乘法问题的方法,这时候进行分数除法教学可以促进知识之间的联系,提高学生分析问题和解决问题的能力。教师在教学时,应充分利用资源,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。三、教学目标根据新课标的要求和教材的特点,结合五年级学生的认知能力,本节课我确定如下的教学目标:
【学习目标】1.知识与技能:知道氧气的制取及检验方法,复习巩固氧气的相关性质。2.过程与方法:通过“探究能使带火星木条复燃所需氧气的最低体积分数”的探究性学习,学习科学探究的基本方法。3.情感态度与价值观:提高实验设计的能力和合作意识,复习巩固相关的基本操作,培养学习化学的兴趣。【学习重点】氧气的实验室制取操作步骤和性质检验。【学习难点】实验操作过程中的注意事项。【课前准备】《精英新课堂》:预习学生用书的“早预习先起步”。《名师测控》:预习赠送的《提分宝典》。情景导入 生成问题1.复习引入:实验室用高锰酸钾制取氧气的反应原理是什么?操作步骤有哪些?2.明确学习目标,由学生对学习目标进行解读。合作探究 生成能力阅读课本P45~P46的内容。提出问题:实验室加热高锰酸钾制取氧气的实验中,使用了哪些仪器?哪部分是气体发生装置?哪部分是气体收集装置?为什么可用排水法收集气体?讨论交流:结合化学实验基本操作和氧气的性质讨论归纳。
三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.
教学目标:1.会画直棱柱(仅限于直三棱柱和直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化。2. 会根据三视图描述原几何体。教学重点:掌握直棱柱的三视图的画法。能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法一、实物观察、空间想像观察:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位置经过 想像,再抽象出这两个直棱柱的主视图,左视图和俯视图。绘制:请你将抽象出来的三种视图画出来,并与同伴交流。比较:小亮画出了其中一个几何体的主视图、左视图和俯视图,你认为他画的对不对?谈谈你的看法。拓展:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随之改变?试一试。
观察 和 的图象,它们有什么相同点和不同点?学生小组讨论,弄清上述两个图象的异同点。交流讨论反比 例函数图象是中心对称图形吗?如果是,请找出对称中心.反比例函数图象是轴对称图形吗?如果是,请指出它的对称轴.二、随堂练习课本随堂练习 [探索与交流]对于函数 , 两支曲线分别位于哪个象限内?对于函数 ,两支曲线又分别位于哪个象限内?怎样区别这两个函数的图象。学生分四人小组全班探索。 三、课堂总结在进行函数的列表,描点作图的活动中,就已经渗透了反比例函数图象的特征,因此在作图象的过程中,大家要进行积极的探索 。另外,(1)反比例函数的图象是非线性的,它的图象是双曲线;(2)反比例 函数y= 的图像,当k>0时,它的图像位于一、三象限内,当k<0时,它的图像位于二、四象限内;(3)反比例函数既是中心对称图形,又是轴对称图形。
三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.
故最少由9个小立方体搭成,最多由11个小立方体搭成;(3)左视图如右图所示.方法点拨:这类问题一般是给出一个由相同的小正方体搭成的立体图形的两种视图,要求想象出这个几何体可能的形状.解答时可以先由三种视图描述出对应的该物体,再由此得出组成该物体的部分个体的个数.三、板书设计视图概念:用正投影的方法绘制的物体在投影 面上的图形三视图的组成主视图:从正面得到的视图左视图:从左面得到的视图俯视图:从上面得到的视图三视图的画法:长对正,高平齐,宽相等由三视图推断原几何体的形状通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中位置及各部分之间大小的对应关系.通过具体活动,积累学生的观察、想象物体投影的经验,发展学生的动手实践能力、数学思考能力和空间观念.
故线段d的长度为94cm.方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.已知三条线段长分别为1cm,2cm,2cm,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为本题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:若x:1=2:2,则x=22;若1:x=2:2,则x=2;若1:2=x:2,则x=2;若1:2=2:x,则x=22.所以所添加的线段的长有三种可能,可以是22cm,2cm,或22cm.方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中线,即F是AD的中点.∵点E是AB的中点,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四边形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面积为8.易错提醒:在运用“相似三角形的面积比等于相似比的平方”这一性质时,同样要注意是对应三角形的面积比,在本题中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四边形BDFE=1:2之类的错误.三、板书设计相似三角形的周长和面积之比:相似三角形的周长比等于相似比,面积比等于相似比的平方.经历相似三角形的性质的探索过程,培养学生的探索能力.通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体验化归思想.运用相似多边形的周长比,面积比解决实际问题,训练学生的运用能力,增强学生对知识的应用意识.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
1)正方形的边长为4cm,则周长为( ),面积为( ) ,对角线长为( );2))正方形ABCD中,对角线AC、BD交于O点,AC=4 cm,则正方形的边长为( ), 周长为( ),面积为( )3)在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性质是( ) A、四个角相等 B、对角线互相垂直平分 C、对角互补 D、对角线相等. 5)、正方形具有而菱形不一定具有的性质( ) A、四条边相等 B对角线互相垂直平分 C对角线平分一组对角 D对角线相等. 6)、正方形对角线长6,则它的面积为_________ ,周长为________. 7)、顺次连接正方形各边中点的小正方形的面积是原正方形面积的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例讲解:1、(课本P21例1)学生自己阅读课本内容、注意证明过程的书写2、 如图,分别以△ABC的边AB,AC为一边向外画正方形AEDB和正方形ACFG,连接CE,BG.求证:BG=CE
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法总结:正方形被对角线分成4个等腰直角三角形,因此在正方形中解决问题时常用到等腰三角形的性质与直角三角形的性质.【类型三】 利用正方形的性质证明线段相等如图,已知过正方形ABCD的对角线BD上一点P,作PE⊥BC于点E,PF⊥CD于点F,求证:AP=EF.解析:由PE⊥BC,PF⊥CD知四边形PECF为矩形,故有EF=PC,这时只需说明AP=CP,由正方形对角线互相垂直平分可知AP=CP.证明:连接AC,PC,如图.∵四边形ABCD为正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴PC=EF,∴AP=EF.方法总结:(1)在正方形中,常利用对角线互相垂直平分证明线段相等;(2)无论是正方形还是矩形,经常连接对角线,这样可以使分散的条件集中.