【类型二】 分式的约分约分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.三、板书设计1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.
解析:由分式有意义的条件得3x-1≠0,解得x≠13.则分式无意义的条件是x=13,故选C.方法总结:分式无意义的条件是分母等于0.【类型三】 分式值为0的条件若使分式x2-1x+1的值为零,则x的值为()A.-1 B.1或-1C.1 D.1和-1解析:由题意得x2-1=0且x+1≠0,解得x=1,故选C.方法总结:分式的值为零的条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.三、板书设计1.分式的概念:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有无意义的条件:当B≠0时,分式有意义;当B=0时,分式无意义.3.分式AB值为0的条件:当A=0,B≠0时,分式的值为0.本节采取的教学方法是引导学生独立思考、小组合作,完成对分式概念及意义的自主探索.提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程中获得了解决新知识的途径.在这一环节提问应注意循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成.
探究点二:列分式方程某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得20x+10x+4=15.故选A.方法总结:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.三、板书设计1.分式方程的概念2.列分式方程本课时的教学以学生自主探究为主,通过参与学习的过程,让学生感受知识的形成与应用的价值,增强学习的自觉性,体验类比学习思想的重要性,然后结合生活实际,发现数学知识在生活中的广泛应用,感受数学之美.
【类型三】 分式方程无解,求字母的值若关于x的分式方程2x-2+mxx2-4=3x+2无解,求m的值.解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的解法方程两边同乘以最简公分母,化为整式方程求解,再检验.2.分式方程的增根(1)解分式方程为什么会产生增根;(2)分式方程检验的方法.
把解集在数轴上表示出来,并将解集中的整数解写出来.解析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,再找出解集范围内的整数即可.解:x+23<1 ①,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式组的解集为-32≤x<1.则不等式组的整数解为-1,0.方法总结:此题主要考查了一元一次不等式组的解法,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、板书设计一元一次不等式组概念解法不等式组的解集利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的基础之上.解不等式组时,先解每一个不等式,再确定各个不等式组的解集的公共部分.
分式1x2-3x与2x2-9的最简公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最简公分母为x(x+3)(x-3).方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.【类型二】 分母是单项式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最简公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最简公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
解析:(1)先把第二个分式的分母y-x化为-(x-y),再把分子相加减,分母不变;(2)先把第二个分式的分母a-b化为-(b-a),再把分子相加减,分母不变.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:fg±hg=f±hg.2.分式的符号法则:fg=-f-g,-fg=f-g=-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.
有三种购买方案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A型1台,B型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤:实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直线AD垂直平分线段EF.方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计1.线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段的垂直平分线的判定定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.
方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.
二、教学目标 ★知识与技能目标: 1、能正确指认绿色开花植物的六大器官; 2、能说出绿色开花植物的相同点和不同点; 3、能用图画或文字描述并记录所观察的植物。 ★过程与方法: 学生在自主探究解决问题的过程中获取认识新知的方法。 ★情感态度与价值观: 在进行探究活动的过程中激发学生研究植物的兴趣,培养学生的合作意识和创新精神。 三、教学重难点 重点:认识绿色开花植物的六大器官。 难点:能用图画或文字描述并记录所观察的植物。
教学过程一、新课导入二、完整聆听1.初听师:晚会的主角是一只可爱的?2.课题:跳圆舞曲的小猫3.学生自由模拟小猫的叫声。4.再听全曲,画图形谱。师:观察图形谱,音乐有几部分组成?三、聆听A段1. 初听,找出模拟小猫叫声的音色。(集体聆听、律动)2. 再次聆听,个体检测3. 学唱A段主体旋律。(老师范唱主体旋律)4. 集体聆听并随音乐律动。5. 集体检测师:刚才唱的主题句放到音乐中你们能找到吗?如果找到了就跟着唱一唱。四、聆听第二乐段1. 初听师:它和第一乐段有联系吗?(找出相同和不同的地方)2. 复听师:速度、情绪和第一乐段比较起来有何不同?五、聆听B乐段1. 初听(教师随音乐律动)2. 复听,隋老师再次划图形谱。3. 师生用木鱼合作演奏。4. 小组合作表演。六、聆听第四乐段1. 初听师:和前面哪段音乐相似?2. 复听师:不同之处在哪?七、完整聆听学生和老师一起律动。
新课标中鼓励音乐创造,注重个性发展,教师应为学生提供发展个性的可能和空间。在这一环节中我以这样一句话:“嘘,别出声,我好像听到谁在叫我,引出小鸡,小鸭加入到我们都行列中来”导入。现在,能不能像老师一样,把这些小动物的声音编成歌词,创作出一首新的主题曲?谁来试试?”学生创编好歌词说:“小朋友们让我们,随着欢快的音乐唱起来、跳起来吧!”来举办一场快乐的音乐会。五、说板书根据本课的教学目标和教学重难点我的板书是这样设计的。板书课题引起学生注意,让学生知道本节课的教学内容;板书难点是为了达到突破难点的目的。六、说反思本课我以“快乐”为主线,贯穿全课。在课堂上体现了以教师为主导,学生为主线的教学理念,实现了合作探究式的学习方法。回顾整个教学环节,在拓展创编这一环节中,由于时间有限,我把学生局限于我预设的几种动物和乐器上,对学生的想象力有些限制。今后,我将力所能及的做到符合学生实际来设计教学。
作为母亲,此时此刻,我无比激动,多少个艰辛和忙乱的日子里,总盼望着孩子长大,我曾无数次的想象和憧憬着她身穿婚纱亭亭玉立的站在我们面前的情景。突然间她长大了,拥有了漂亮、健康和知识,今天又做了幸福的新娘!母爱是一条回家的小路,伴着这首诗我的女儿走过了二十几个春夏秋冬。在她成长的路上,给我们带来了许许多多的快乐与幸福。至今我还能清晰的记得她六岁时获得宁波市舞蹈比赛一等奖的演出情景,后来的全国雏鹰奖和新苗杯主持人金奖给我们带来了一次次的惊喜和欣慰。因此。我祝福我的女儿,也感谢我的女儿。同时我也感谢我们的亲家,你们的精心培养让我们的家庭从今天开始有了一个儿子。
一、说教材(一)、教学内容:一年级数学上册第73-74页的内容及相应的习题。(二)、教材所处地位及作用“11-20各数的认识”这部分教材是在学生掌握10以内数的基础上,通过操作实践,观察思考、合作交流等学习方式帮助学生学习新知识,并且为学习20以内的加、减法做好准备。本课分成三个层次进行教学:第一,是先出示水果卡片的情境图,让学生观察、数一数,图中有些什么?有多少?并且通过这个情境图让学生明白数数是按顺序点着数。第二,是让学生通过观察思考、动手操作、数一数及合作交流的学习方式去学习“11-20各数”的认识、组成、数的顺序及大小。第三,通过创设一系列的游戏情境,让学生巩固本节课的新知识。(三)、教学目标:1.常识技巧目的:通过《11-20各数的意识》的教养,学生应当取得以下方面的知识和技能
3、概括百分数的意义师:通过刚才同学们的互相合作交流你感受到,百分数表示什么意思吗?请你先自己想一想,然后同桌合作交流一下。(在充分的表述对百分数的意义认识基础上,由生活信息概括提炼出的百分数的含义)4、教学百分数的读写法百分数的读对于学生来说比较简单,重点介绍%的写法。教师出示带有情境的一组百分数数据信息,先让学生自读,再提问:读了这些数据发现了什么?使学生了解到百分号前面的数可以是整数、小数,可以比100大可以比100小,完善对百分数的认识,同时也渗透德育教育,让学生通过数据说说自己的体会,得到热爱祖国、热爱家乡、爱护环境的教育。5、百分数与分数的联系区别这是教学中的难点,纯语言的表达过于抽象,也不利于理解。因此它们之间的区别与联系是通过练习的形式解决。
三、巩固应用在这一环节,我设计了三个层次的习题,内容由浅入深,逐步提高,让学生体验到用数学知识解决实际问题的成功感,并给学生提供自主探索的时间和空间,从而产生积极的数学情感。第一个层次(基础练习):课件出示教材第28页中“试一试”的第一题,让学生根据情境中的信息,比较两题之间的异同,独立解答,然后交流解答方法,加深对百分数问题的理解。第二个层次(综合练习):课件出示教材第29页中“练一练”的第1、2、4题,鼓励学生独立分析题意,寻找等量关系,然后列方程解答。引导学生将题中的“二成”转化为百分数。第三个层次(提高练习):课件出示教材第29页中“练一练”的第5题,鼓励学生提出两个不同的问题并解答,培养学生根据统计图提供的信息提出问题的能力,使学有余力的学生有所提高。四、总结评价1、学生归纳总结在本节课你学到了什么,有哪些地方要提醒同学们注意。2、师作适当的补充和评价。此环节通过师生互动,生生互动,经历一次再学习,再巩固的过程。
1.注重创设情境,让学生从现实生活中学习数学。“良好的开端是成功的一半。”精彩的开篇不仅很快集中了学生的注意力,而且调动了学生主动参与学习的积极性。所以课的开始,我设计了王叔叔的例子.我的话语一落下,同学们就纷纷举起了手,发表自己的看法。首选的办法就是存银行,并且说出储存银行的好处。一是可以获得利息增值;二是可以支援国家建设。学生了解了储蓄的意义,从而引出课题,使他们感到要学习的内容与现实生活的紧密联系,有利于提高学习的兴趣.2、给学生充足的探索空间,让学生成为学习的主人。课堂上,让学生主动地进行数学学习,动手实践、自主探索、合作交流。3、积极引导学生把知识应用到生活中。数学来源于生活,也服务于生活,引导学生学会把课本中的所学,应用到日常生活中,学生对存款中的有关计算利息,本金、利率等知识了解的同时,也能结合学习中的体验开展实践交流活动,形成良好的消费观,也能把储蓄、纳税的知识应用到现实生活中来。
1、教材简析本课学习亿以内数的读法、写法使学生进一步认识计数单位“万”“十万”“百万”“千万”“亿”??知道亿以内以及亿以上各个计数单位的名称和相邻两个技术单位间的进率,学会写亿以内的数。2、教学目标(1)、是学生能正确读写亿以内的数,并了解我国的计数习惯——每四个数为一级。(2)、体会大数在生活中的广泛应用,培养学生自爱生活中寻找数学信息的意识和能力。(3)、了解一些科普知识,并渗透爱国主义教育。3、教学重难点:体会大数在生活中的广泛应用。能正确读写亿以内的数。二、说教法和学法学生是学习的主人,数学教学应设法降低学生的学习难度激发、发学生的学习兴趣,增强学生学好数学的信心。同时注重培养学生自主学习的意识和习惯,为学生创设良好的自主学习情境,尊重学生的个体差异,鼓励学生选择适合自己的学习方式。