2、发展幼儿思维的可逆性、传递性和双重性。 3、培养幼儿爱动脑爱学习的良好习惯。活动准备:7张厚薄不同的图书图片;7张高矮相同、粗细不同的树干图片 活动过程: 一、开始部分 老师这里有一些你们的好朋友,想不想知道是谁呀! 二、基本部分 1、厚薄的排序 (出示厚薄不同的图片,7张)。你们知道他们是谁吗? 可是他们没有名字,很伤心,我们来帮他们把名字起了好吗?<让幼儿按照从薄到厚的顺序〉
2、教幼儿学习把相同颜色的不同物体放在一起。 3、激发幼儿参与活动的兴趣,培养幼儿讲述操作过程的习惯。 活动准备: 1、红、黄、绿色的小房子(纸盒做的)各一个,幼儿每人一篮(3—6片)红、黄、绿色雪花片。 2、红、黄、绿色花一朵,红、黄、绿色蝴蝶卡片各一个。 活动过程: 1、蝴蝶找花(把相同颜色的物体放在一起)。 教师出示红、黄、绿色花卡片和红、黄、绿色蝴蝶卡片各一个,讲述小故事,“花园里住着三只美丽的蝴蝶,一只是红色的(舞动红蝴蝶),一只是黄色的(舞动黄蝴蝶),还有一只是绿色的(舞动绿蝴蝶)。它们天天在花园里唱歌、跳舞、做游戏,非常快乐。有一天,三只蝴蝶正在花园里玩‘捉迷藏’的游戏,忽然‘哗啦拉’下起雨来,三只蝴蝶想在花姐姐的叶子下面避雨,花姐姐说:‘和我颜色一样的蝴蝶请进来吧!’谁愿意帮助三只蝴蝶找到相同颜色的花?” 2、游戏“蝴蝶找花”
2、巩固按物体的数量匹配相应的点卡。 3、在教师的引导下,理解活动操作过程,能正确地进行操作。 活动准备: 水果实物(苹果1个、橘子2个、梨子3个),单独的动物图片(每种动物数量分别是1、2、3),1—3的点卡,盘子3个,大分类箩筐1个。 活动过程: 一、妈妈买的水果。 1、教师(出示一篮水果):这是妈妈刚才买回来的水果,请你帮助妈妈一起来整理水果好吗? 2、师幼将水果拿出来放在桌子上说一说:有哪些水果? 3、启发幼儿思考:我们怎样整理它们呢?引导幼儿把一样的水果放在一个盘子
活动目标 1、尝试分辨爸爸妈妈和宝宝的物品,感知物品的大小及其它特征。 2、学会按爸爸妈妈和宝宝的图片标记匹配相应的物品。 1、有初步地关心爸爸妈妈的情感体验。 活动准备: 教具:爸爸妈妈和宝宝的图片各一张,三个人的袜子、衣服等衣物若干。 学具:《幼儿用书》人手一册。 活动过程: 1、这是谁的衣服。 出示爸爸妈妈和宝宝的图片,向幼儿介绍:这是宝宝的一家。引导幼儿观察并说出谁是爸爸,谁是妈妈,谁是宝宝,你是怎么看出来的。 出示实物衣服、裤子等服装图片,请幼儿说说这些是什么?有什么不同?这是谁的衣服?你是怎么知道的?
1、初步尝试按交替规律排列物体,并能边操作边讲述:一个╳╳,一个╳╳。 2、通过观察范例和教师语言的引导,能发现实物交替排列的规律。 3、乐意制作串串香,感知体验制作成功的快乐。 活动准备 教具:用橡皮泥捏的黄瓜、香蕉、冬枣、圣女果等,按交替规律串成两串“串串香。 学具: ——橡皮泥做的水果若干,长竹签若干根,彩色木珠若干。 ——幼儿用书,彩色笔。
2、认识颜色标记,能按照颜色标记的提示,选择相应颜色的实物或给实物涂色。 3、乐意参加数学活动,能自己动脑完成操作活动。 活动准备: 教具:红、黄、蓝色的油画棒,红、黄、蓝色的玩具若干,三个篓子,上面分别贴有红、黄、蓝标记。 学具:操作材料人手一份,红、黄、蓝色彩色笔或油画棒。 活动过程: 一、 认识颜色及颜色标记。 1、师:小朋友,你想当一名小画家吗?小画家要用什么来画画呢? 2、师:小朋友你们认识这些画笔的颜色吗?老师来考考你们。(师出示红、黄、蓝三色油画棒,带领大家一起认识画笔颜色。) 3、师:小朋友看!这是什么?这是颜色标记,你们认识这些颜色标记吗?(师分别用红黄蓝画笔在纸上画颜色标记,引导幼儿认识红色、黄色、蓝色。)
2.体验数学活动的快乐,喜欢数学活动。流程: 参观服装店,对服装有初步的印象——寻找与指定目标相同的帽子,衣服和帽子(图形对应)——和天线宝宝玩游戏(按目标找物,颜色对应)——玩天线宝宝,结束(验证) 活动准备: 1.将活动室布置成小形的服装店,服装小卡片若干 2.天线宝宝和其他小玩具若干。 活动过程: 1.带幼儿参观服装店,引导幼儿观看各种衣服,裤子,帽子的形状,对服装店有初步的认识; (情景的创设,是吸引小班幼儿有意注意的有效办法。也是让活动更显生活化,更具生动性的手段) 主要提问:商店里有些什么?它们一样吗?都是什么样的?(从类型和颜色上来回答)
2、活动定位——概括提升原有经验梳理、归纳、概括是集体教学活动的主要任务,本活动以经验呈现——概括提升——巩固运用为主线,通过实践操作和交流分享引导幼儿主动建构经验,感受统计的重要和有趣。3、教材价值——培养统计意识,发展数学思维统计是探究性实践活动的一种形式,包括收集信息、处理信息和得出结论的过程。本活动不仅发展幼儿的计数、比较数量等数学技能,更重要的是在辩析的过程中学习统计记录的方法,有助于培养统计意识,形成科学的思维能力。二、活动目标1、在游戏情境中萌发对统计的兴趣,感知统计的作用。2、经历数据的收集、整理过程,通过数量比较判断输赢。知道收集数据的方法是多样的,学习用记录的方法收集数据,在经验分享和解决问题的过程中发展初步的分析、综合能力。三、活动准备经验准备:幼儿有玩竞赛性游戏的经验材料准备:实物投影仪、黑板、记录纸、笔等
2、能仔细观察图片,能独立地找出不同的特征尝试进行分合。 3、乐于接受和尝试新的方法进行操作。 活动准备: 经验准备:幼儿已学习过7、8的组成。 物质准备: 教具:乌龟一家的图片(图上有7只乌龟,1只大乌龟,六只小乌龟,三只在岸上,四只在水里) 学具:《幼儿用书》(P7页)幼儿人手一支笔。 活动过程: ※乌龟一家出来玩 ——教师(出示一张“乌龟一家”的图片),今天天气真好啊,乌龟一家出来玩啦,看,这儿有几只乌龟?他们都一样吗?哪儿不一样啊? ——提醒幼儿先记录总数,再引导幼儿观察图上有的乌龟有什么相同与不同的地方。 ——教师:我们发现了许多不一样的地方,谁按这些不同把乌龟分成两组? ——幼儿思考并尝试将乌龟分成两组,说一说:大乌龟有几只,小乌龟有几只,根据大小特征,用分合式记录乌龟的数量。然后再找出一个不同点分一分并记录,如:按乌龟所在的位置不同,分为三只在岸上和四只在水里等。
3、在活动中诱发幼儿形成遵守时间与爱惜时间的良好习惯。活动准备:1、教具:有关各种时钟的幻灯片;时钟一面,可活动钟面一只;表示7、8、9、10点钟的钟面各一只,时间记录卡各一张。2、学具:幼儿观察记录表每人一份,活动钟面每人一份;实物时钟4只。活动过程:一、调动已有经验,回忆相关知识。1、前段时间我们小朋友和老师一起做了有关时钟的调查,知道时钟有好多好多种。现在请你看看老师从网上下载的钟,看看你认识它吗?2、依次出示幻灯片,幼儿讲名称。3、刚才我们所见到的只是时钟家族的一部分,它可能还有其他的种类,我们以后再来探讨。4、上次我们已经认识过钟面,来告诉大家,最长的针叫(秒针),有点长的针叫(分针),最短的针叫时针。钟面上一共有多少个数字(12),最上面的是数字12,然后依次是1、2……11。请你好好回忆一下,时钟里的指针是朝哪一个方向走的?(1……12)对了,这样的方向就叫顺时针方向。二、交流调查表,说说自己在什么时间,正在干什么?1、小朋友们说的真好,那你知道我们人为什么要使用钟吗?2、钟与我们人的生活有着密切的关系,前几天我们小朋友已经做过了一个调查,将自己活动的时间记录了下来,现在请你拿出自己的调查表,说说你在什么时间在干什么?你只要说出长针在几,短针在几的时候,你在干什么?好我们先自己说。3、谁愿意上来说给大家听。(请3—4个小朋友上来说)。
2、尝试用自己的语言讲述三幅图的意思。 3、专心地进行自己的操作活动。经验准备:幼儿学习过2的组成。 物质准备: ——小螃蟹图片,2个泡泡,数字1、1、2,符号+、—、=。 ——学具:《幼儿用书》P33页,幼儿人手一支笔。活动过程1、 小螃蟹吐泡泡。 ——教师出示一只小螃蟹图片,边演示边引导幼儿观察:小螃蟹吐泡泡,它是怎么吐的?鼓励幼儿讲述小螃蟹先吐了1个泡泡,又吐了1个泡泡,小螃蟹一共吐了2个泡泡。 ——启发幼儿思考:小螃蟹先吐的1个泡泡可以用数字几表示?又吐的1个泡泡可以用什么符号和数字几表示?一共吐了2个泡泡可以用什么符号和数字几表示? 引出“+”和“=“,初步了解加号表示把它两边的数合起来,让幼儿知道可以用”+“表示又吐出了1个泡泡;等号表示它两边的数一样多。幼儿认读并空手练习书写加号、等号。 ——教师完整地列出算式1+1=2,引导幼儿说一说这个算式表示什么意思。
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
《基本不等式》在人教A版高中数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。2.经历基本不等式的推导与证明过程,提升逻辑推理能力。3.在猜想论证的过程中,体会数学的严谨性。数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值;4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.
本节课选自《普通高中课程标准数学教科书-必修一》(人 教A版)第五章《三角函数》,本节课是第1课时,本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念以及终边相同的角的表示法。树立运动变化的观点,并由此进一步理解推广后的角的概念。教学方法可以选用讨论法,通过实际问题,如时针与分针、体操等等都能形成角的流念,给学生以直观的印象,形成正角、负角、零角的概念,明确规定角的概念,通过具体问题让学生从不同角度理解终边相同的角,从特殊到一般归纳出终边相同的角的表示方法。A.了解任意角的概念;B.掌握正角、负角、零角及象限角的定义,理解任意角的概念;C.掌握终边相同的角的表示方法;D.会判断角所在的象限。 1.数学抽象:角的概念;2.逻辑推理:象限角的表示;3.数学运算:判断角所在象限;4.直观想象:从特殊到一般的数学思想方法;
学生在初中学习了 ~ ,但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入初中对角的定义是:射线OA绕端点O按逆时针方向旋转一周回到起始位置,在这个过程中可以得到 ~ 范围内的角.但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.
知识探究(一):普查与抽查像人口普查这样,对每一个调查调查对象都进行调查的方法,称为全面调查(又称普查)。 在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体。为了强调调查目的,也可以把调查对象的某些指标的全体作为总体,每一个调查对象的相应指标作为个体。问题二:除了普查,还有其他的调查方法吗?由于人口普查需要花费巨大的财力、物力,因而不宜经常进行。为了及时掌握全国人口变动状况,我国每年还会进行一次人口变动情况的调查,根据抽取的居民情况来推断总体的人口变动情况。像这样,根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和判断的方法,称为抽样调查(或称抽查)。我们把从总体中抽取的那部分个体称为样本,样本中包含的个体数称为样本量。
本节主要内容是三角函数的诱导公式中的公式二至公式六,其推导过程中涉及到对称变换,充分体现对称变换思想在数学中的应用,在练习中加以应用,让学生进一步体会 的任意性;综合六组诱导公式总结出记忆诱导公式的口诀:“奇变偶不变,符号看象限”,了解从特殊到一般的数学思想的探究过程,培养学生用联系、变化的辩证唯物主义观点去分析问题的能力。诱导公式在三角函数化简、求值中具有非常重要的工具作用,要求学生能熟练的掌握和应用。课程目标1.借助单位圆,推导出正弦、余弦第二、三、四、五、六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√