从以下话题中任选其一(也可自选话题),写一篇作文,谈谈自己对剧本和戏剧表演的认识。不少于600字。①我为什么对“他”印象最深②舞台说明不只是“说明”③戏剧冲突面面观④台词应该怎样说⑤肢体语言很重要⑥配角也要演到位⑦“好戏”是配合出来的2.技法点拨。①写作时,结合对剧本和戏剧表演的认识,发表自己的见解和看法,力求明白晓畅,切勿写得深奥晦涩难懂。②阐述认识时,要列举剧本和戏剧表演的实例进行分析,便于读者理解和信服。③涉及把握不准的专业术语需查阅相关资料、典籍,规避错误,以免误导读者。④明确提出观点,筛选典型事例作为依据,分析材料与观点之间的关系。师:无论是选择哪一个话题,都要结合具体的实例进行分析,不能只列条目而无内容。针对某一戏剧或谈人物,或谈舞台说明,或谈矛盾冲突,或谈肢体语言,或谈相互配合等;也可以针对某个话题,列举多部戏剧中具体的一句、一段话,或一幕。
结束语:通过这节课的探究,我们了解了本单元三部戏剧的背景和主旨,相信大家对剧本的理解更深了。下节课,我们就要准备排练戏剧,希望大家课下再好好读读剧本,加深理解。五、布置作业1.课后查阅关于表演的相关资料,了解表演的知识。2.选择最喜欢的一个剧本熟读,并选择其中最喜欢的一个人物,揣摩应如何表演。剧本学习是一项新的教学内容,本次教学设计主要以人物为核心,从三个方面展开:(1)从文本的角度读剧本。从基本的情节入手,通过理解情节中的矛盾冲突来感知人物形象,让学生建立对剧本的基本理解。(2)从表演的角度读剧本。训练学生的朗读能力,引导学生通过台词来理解人物,为下阶段的舞台表演打下基础。(3)从现实的角度读剧本。指导学生认识剧本的现实意义,促进学生的成长。
1.题目具有开放性,可以实写,也可以虚写。展开联想和想象,将自己想到的全列出来,然后再从中确定写作重点。2.从题目看,可以灵活选择文体。比如,可以以写景或抒情为主,也可以进行议论,或者虚构一个故事等,要力求有创意。3.注意表达上的创新,丰富的词语、恰当的修辞等,都可以为文章增色。2.写作指导。(1)审题立意。本题具有开放性,有实虚两重意义。展开联想和想象,可以写实,也可以写它的象征意义,还可以实虚结合。“春天的色彩”既可以指现实中的春天的各种色彩,也可以指象征意义中的“春天”带着“色彩”(以表达某种心情)。如自然的春天、社会的春天、心灵的春天等等。(2)文体选择与表达。在文体方面,可以写成写景或抒情的散文,也可以写议论文,或者写成表达“春天的色彩”这一主题的记叙文。在表达上应有创新,可以用丰富的词汇、变换的句式、新颖的修辞为文章增色。尤其在作文形式上要有所创新。
诗歌创作个性十足,难以用统一的规律去分析,然而发掘一些欣赏诗歌的一般性的思路和角度,可以让阅读诗歌有章可循,减少学生读诗时的畏难情绪。在第1课时中,我以朗读为贯穿课堂的抓手,让学生通过思考“怎么读”,自觉地去发现并分析诗歌中的意象,理解诗歌大意,让学生对诗歌有初步的理解和体会。第2课时在整体把握诗歌的基础上,具体去分析诗歌中富有表现力的语言,训练学生深入思考的能力,引导学生梳理诗歌的情感脉络,体会诗中作者的情感变化,理解诗人想要表达的真挚情感,并通过拓展阅读让学生尝试自己解读诗歌,帮助学生巩固所学的阅读诗歌的方法。两节课的侧重点不同,但都围绕这首诗的特点和整体教学思路进行规划,做到“一课一得”。写作背景舒婷初中毕业后下乡插队,后又当过工人。在国家蒙难、人民遭殃的非常岁月,备尝艰辛的舒婷,内心的迷惘、痛苦可想而知。1978年12月,中国迎来了具有重大历史意义的十一届三中全会,开启了改革开放的历史新时期。1979年4月,诗人面对祖国摆脱苦难、正欲奋飞的情景,以自己独有的抒情方式写下了此诗。
解析:此题作为一道开放型题,分类的方法非常多,只要能说明分类的理由即可.但要注意:按某一标准分类时,要做到不重不漏,分类标准不同时,分类的结果也就不尽相同.解:本题答案不唯一,如按柱体、锥体、球体分类:(2)(3)(5)和(6)都是柱体,(4)(7)是锥体,(1)是球体.方法总结:生活中常见几何体有两种分类:一种按柱体、锥体、球体分类;一种按平面和曲面分类.探究点二:几何体的形成笔尖画线可以理解为点动成线.使用数学知识解释下列生活中的现象:(1)流星划破夜空,留下美丽的弧线;(2)一条拉直的细线切开了一块豆腐;(3)把一枚硬币立在桌面上用力一转,形成一个球.解析:解释现象关键是看其属于什么运动.解:(1)点动成线;(2)线动成面;(3)面动成体.方法总结:生活中的很多现象都可以用数学知识来解释,关键是要找到生活实例与数学知识的连接点,如第(1)题可将流星看作一个点,则“点动成线”.如图所示,将平面图形绕轴旋转一周,得到的几何体是()
四、做一做(实践)1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。五、试一试(探索)课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体1、以正四面体为例,说出它的顶点数、棱数和面数。2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的P128的表格。引导学生发现结论。3、(延伸):若随意做一个多面体,看看是否还是那个结果。
1.能从统计图中获取信息,并求出相关数据的平均数、中位数、众数;(重点)2.理解并分析平均数、中位数、众数所体现的集中趋势.(难点)一、情境导入某次射击比赛,甲队员的成绩如下:(1)根据统计图,确定10次射击成绩的众数、中位数,说说你的做法,并与同伴交流.(2)先估计这10次射击成绩的平均数,再具体算一算,看看你的估计水平如何.二、合作探究探究点一:从折线统计图分析数据的集中趋势广州市努力改善空气质量,近年空气质量明显好转,根据广州市环境保护局公布的2006~2010年这五年各年的全年空气质量优良的天数,绘制成折线图如图所示.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是________;(2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是________年(填写年份);(3)求这五年的全年空气质量优良天数的平均数.解析:(1)由图知,把这五年的全年空气质量优良天数按照从小到大的顺序排列为:333,334,345,347,357,所以中位数是345;
∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在点Q时在路灯AD下影子的长度为1.5m;(2)同理可证△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路灯AD的高度为12m.方法总结:解决本题的关键是构造相似三角形,然后利用相似三角形的性质求出对应线段的长度.三、板书设计投影的概念与中心投影投影的概念:物体在光线的照射下,会 在地面或其他平面上留 下它的影子,这就是投影 现象中心投影概念:点光源的光线形成的 投影变化规律影子是生活中常见的现象,在探索物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念.通过在灯光下摆弄小棒、纸片,体会、观察影子大小和形状的变化情况,总结规律,培养学生观察问题、分析问题的能力.
五、回顾总结:总结:1、投影、中心投影 2、如何确定光源(小组交流总结.)六、自我检测:检测:晚上,小华在马路的一侧散步,对面有一路灯,当小华笔直地往前走时,他在这盏路灯下的影子也随之向前移动.小华头顶的影子所经过的路径是怎样的?它与小华所走的路线有何位置关系?七、课后延伸:延伸:课本128页习题5.1八、板书设计投影 做一做:投影线投影面 议一议:中心投影九、课后反思本节课先由皮影戏引出灯光与影子这个话题,接着经历实践、探索的过程,掌握了中心投影的含义,进一步根据灯光光线的特点,由实物与影子来确定路灯的位置,能画出在同一时刻另一物体的影子,还要求大家不仅要自己动手实践,还要和同伴互相交流.同时要用自己的语言加以描述,做到手、嘴、脑互相配合,培养大家的实践操作能力,合作交流能力,语言表达能力.
1、结合具体生活场景,能运用所学的乘法口诀解决简单的实际问题,通过图与式的对应,进一步理解乘法的意义。 2、能熟练运用口诀进行计算,提高灵活运用口诀解决实际问题的能力。 3、体会数学与实际生活的联系,培养用数学的意识,体验口诀在解决问题中的作用。 运用所学乘法解决简单的实际问题。 结合实际情景理解乘法的意义。 1、口算: 5×2=10 6×2=12 8×5=40 2×7=14 5×9=45 3×5=15 2×6=12 2×9=18 4×2=8 2、谈话导入:在前面的学习中,我们认识了乘法,而且还学习了2和5的乘法口诀。这节课,老师想请同学们用这些跟乘法有关的知识来帮助老师一起解决生活中遇到的问题,一起来看一看吧。快乐休息时间到了,学校的大操场突然热闹起来了,你们一定非常喜欢课件活动吧!看,操场上同学们有的在玩老鹰捉小鸡的游戏,有的在进行乒乓球比赛,有的在跳绳,还有的在踢毽子……真热闹啊!
本章是第三章第一节的开端,学生在第二节已经学习了元素的组成和一些生物大分子,本节课内容是学会使用显微镜,这是生物学习过程中最为重要的一种手段之一。对于今后的实验学习有着极其重要的作用。 学生中大部分同学在初中阶段都有接触过光学显微镜,所以在学习理论知识的时候能够顺利的进行,但因为学校的条件有限,不能保证同学们进行显微镜的实验,本节课结合学生情况和实际情况,采用图片和模型展示的方法进行。 知识与能力 1、概述细胞学说建立的过程。 2、概述细胞学说的内容和意义。 3、学习制作临时玻片标本,使用显微镜和绘图的能。
集合的基本运算(1) 一、教学目标 1、 知识与技能 (1)理解并集和交集的含义,会求两个简单集合的交集与并集。 (2)能够使用Venn图表达两个集合的运算,体会直观图像对抽象概念理解的作用。 2、过程与方法 (1)进一步体会类比的作用 。 (2) 进一步树立数形结合的思想。 3、情感态度与价值观 集合作为一种数学语言,让学生体会数学符号化表示问题的简洁美。 二、教学重点与难点 教学重点:并集与交集的含义 。 教学难点:理解并集与交集的概念,符号之间的区别与联系。
【课题】1.1 集合的概念【教学目标】1、理解集合、元素的概念及其关系,掌握常用数集的字母表示;2、掌握集合的列举法与描述法,会用适当的方法表示集合.3、通过集合语言的学习与运用,培养分类思维和有序思维,从而提升数学思维能力.4、接受集合语言,经历利用集合语言描述元素与集合间关系的过程,养成规范意识,发展严谨的作风。【教学重点】集合的表示法. 【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.
课 程数学章节内容5.1角的概念推广课程类型新课课时安排2课时指导教师 日期12月2 日学习目标理解将角度从0°~360°推广任意角。学习重点掌握角的度量、任意角学习难点理解象限角、界限角和终边相同的角回顾(温故知新)1、角度的概念:什么是角?始边、终边、顶点。 问题(顺着问题找思路)1、正角.负角.零角.界限角和第几象限的角概念?按照逆时针方向旋转所形成的角叫做________,按照_____时针旋转所形成的角叫负角。当射线没有作任何旋转时,形成的角叫________(结合图形讲解) 2、在坐标系中依次表示390°、30°、-330°,观察图像,探讨终边相等的角的特点、有什么关系?思考如何用集合表示终边相等的角度?
教学内容4.4.1 对数函数及其图像与性质教学时间 (不超过3课时)2课时授课类型新授课班级 日期 教学目标知识目标:掌握对数函数的概念,图象和性质,并会简单的应用.能力目标:观察对数函数的图像,总结对数函数的性质,培养观察能力.情感目标:)体味对数函数的认知过程,树立严谨的思维习惯.教学重点对数函数的图像及性质.教学难点对数函数图象和性质的发现过程,培养数形结合的思想.教法学法这节课主要采用启发式和引导发现式的教学方法。⑴ 实例引入知识,提升学生的求知欲;⑵ “描点法”作图与软件的应用相结合,有助于观察得到指数函数的性质; ⑶知识的巩固与练习,培养学生的思维能力;通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受.课前准备1.备教材、备学生 2.PPT课件 3.五环四步教学模式教案教 学 过 程环节教师活动师生活动预期效果一环 学情 动员某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,……,那么,知道分裂得到的细胞个数如何求得分裂次数呢? 设1个细胞经过y次分裂后得到x个细胞,则x与y的函数关系是,写成对数式为,此时自变量x位于真数位置.师:根据式,给定一个x值(经过的次数),就能计算出唯一的函数值y.实际上,在这个问题中知道的是y的值,要求的是对应的x值.所以用对数形式表示, 通常我们用x表示自变量,用y表示因变量, 易于学生想象领会函数意义二环问题 诊断一般地,形如的函数叫以为底的对数函数,其中a>0且a≠1.对数函数的定义域为,值域为R. 例如、、都是对数函数. 教师引导学生联系上面“情景问题”的表达式,请同学们思考讨论对数函数的概念. 师:(1) 为什么规定 a>0且 a≠1? (2) 为什么对数函数的定义域是(0,+∞)? 指导体会对数函数的特点。让学生牢记底数大于零且不等于1,真数大于零.
课题名称4.1实数指数幂授课班级 授课时间13机电1课题序号 授课课时第 到 授课形式启发、类比使用教具课件教学目的1.识记n次方根的概念,能区分奇次方根、偶次方根和n次根算式根。 2.能描述分数指数幂的定义,会进行根式与分数指数幂的互化。 3.识记有理数指数幂的运算性质,会进行简单的有理数指数幂的运算。教学重点有理数指数幂的运算、实数指数幂的综合运算教学难点有理数指数幂的运算、实数指数幂的综合运算更新、补 充、删减 内容无课外作业 1.P 96 习题。 授课主要内容或板书设计实数指数幂 概念 思考交流 例题 课堂小结 问题解决 练习 教学后记
【教学目标】知识目标:(1)掌握利用计算器求角度的方法;(2)了解已知三角函数值,求指定范围内的角的方法.能力目标:(1)会利用计算器求角;(2)已知三角函数值会求指定范围内的角;(3)培养使用计算工具的技能.【教学重点】已知三角函数值,利用计算器求角;利用诱导公式求出指定范围内的角.【教学难点】已知三角函数值,利用计算器求指定范围内的角.【教学设计】(1)精讲已知正弦值求角作为学习突破口;(2)将余弦、正切的情况作类比让学生小组讨论,独立认知学习;(3)在练习——讨论中深化、巩固知识,培养能力;(4)在反思交流中,总结知识,品味学习方法.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】 教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 5.7已知三角函数值求角 *构建问题探寻解决 问题 已知一个角,利用计算器可以求出它的三角函数值, 利用计算器,求= (精确到0.0001): 反过来,已知一个角的三角函数值,如何求出相应的角? 解决 准备计算器.观察计算器上的按键并阅读相关的使用说明书.小组内总结学习已知三角函数值,利用计算器求出相应的角的方法. 利用计算器求出x:,则x= 归纳 计算器的标准设定中,已知正弦函数值,只能显示出?90°~ 90°(或)之间的角. 介绍 质疑 提问 引导 说明 了解 思考 动手 操作 探究 利用 问题 引起 学生 的好 奇心 并激 发其 独立 寻求 计算 器操 作的 欲望 10
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的余弦公式与正弦公式. *创设情境 兴趣导入 问题 我们知道,显然 由此可知 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 10*动脑思考 探索新知 在单位圆(如上图)中,设向量、与x轴正半轴的夹角分别为和,则点A的坐标为(),点B的坐标为(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用诱导公式可以证明,(1)、(2)两式对任意角都成立(证明略).由此得到两角和与差的余弦公式 (1.1) (1.2) 公式(1.1)反映了的余弦函数与,的三角函数值之间的关系;公式(1.2)反映了的余弦函数与,的三角函数值之间的关系. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 25
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 我们知道,在直角三角形(如图)中,,,即 ,, 由于,所以,于是 . 图1-6 所以 . 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 10*动脑思考 探索新知 在任意三角形中,是否也存在类似的数量关系呢? c 图1-7 当三角形为钝角三角形时,不妨设角为钝角,如图所示,以为原点,以射线的方向为轴正方向,建立直角坐标系,则 两边取与单位向量的数量积,得 由于设与角A,B,C相对应的边长分别为a,b,c,故 即 所以 同理可得 即 当三角形为锐角三角形时,同样可以得到这个结论.于是得到正弦定理: 在三角形中,各边与它所对的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列问题: (1)已知三角形的两个角和任意一边,求其他两边和一角. (2)已知三角形的两边和其中一边所对角,求其他两角和一边. 详细分析讲解 总结 归纳 详细分析讲解 思考 理解 记忆 理解 记忆 带领 学生 总结 20
学科数学 课 题 1.2 集合之间的关系班级 人数 授课时数2 课 型新课 周次 授课时间 教 学 目 的 知识目标:(1)掌握子集、真子集的概念; (2)掌握两个集合相等的概念; (3)会判断集合之间的关系. 能力目标:培养学生的分析问题能力解决问题的能力. 情感目标:通过师生互动,学生之间的讨论分析,加强合作意识。 教学重点集合与集合间的关系及其相关符号表示. 教学难点真子集概念的理解.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。