因为x3表示手机部数,只能为正整数,所以这种情况不合题意,应舍去.综上所述,商场共有两种进货方案.方案1:购甲型号手机30部,乙型号手机10部;方案2:购甲型号手机20部,丙型号手机20部.(2)方案1获利:120×30+80×10=4400(元);方案2获利:120×20+120×20=4800(元).所以,第二种进货方案获利最多.方法总结:仔细读题,找出相等关系.当用含未知数的式子表示相等关系的两边时,要注意不同型号的手机数量和单价要对应.三、板书设计增收节支问题分析解决列二元一次方程,组解决实际问题)增长率问题利润问题利用图表分析等量关系方案选择通过问题的解决使学生进一步认识数学与现实世界的密切联系,乐于接触生活环境中的数学信息,愿意参与数学话题的研讨,从中懂得数学的价值,逐步形成运用数学的意识;并且通过对问题的解决,培养学生合理优化的经济意识,增强他们的节约和有效合理利用资源的意识.
A、B两码头相距140km,一艘轮船在其间航行,顺水航行用了7h,逆水航行用了10h,求这艘轮船在静水中的速度和水流速度.解析:设这艘轮船在静水中的速度为xkm/h,水流速度为ykm/h,列表如下,路程 速度 时间顺流 140km (x+y)km/h 7h逆流 140km (x-y)km/h 10h解:设这艘轮船在静水中的速度为xkm/h,水流速度为ykm/h.由题意,得7(x+y)=140,10(x-y)=140.解得x=17,y=3.答:这艘轮船在静水中的速度为17km/h,水流速度为3km/h.方法总结:本题关键是找到各速度之间的关系,顺速=静速+水速,逆速=静速-水速;再结合公式“路程=速度×时间”列方程组.三、板书设计“里程碑上的数”问题数字问题行程问题数学思想方法是数学学习的灵魂.教学中注意关注蕴含其中的数学思想方法(如化归方法),介绍化归思想及其运用,既可提高学生的学习兴趣,开阔视野,同时也提高学生对数学思想的认识,提升解题能力.
提示:要学会在图表中用含未知数的代数式表示出要分析的量;然后利用相等关系列方程。2.Flash动画,情景再现.3.学法小结:(1)对较复杂的问题可以通过列表格的方法理清题中的未知量、已知量以及等量关系,这样,条理比较清楚.(2)借助方程组解决实际问题.设计意图:生动的情景引入,意在激发学生的学习兴趣;利用图表帮助分析使条理清楚,降低思维难度,并使列方程解决问题的过程更加清晰;学法小结,着重强调分析方法,养成归纳小结的良好习惯。实际效果:动画引入,使数字问题变的更有趣,确实有效地激发了学生的兴趣,学生参与热情很高;借助图表分析,有效地克服了难点,学生基本都能借助图表分析,在老师的引导下列出方程组。4.变式训练师生共同研究下题:有一个三位数,现将最左边的数字移到最右边,则比原来的数小45;又知百位数字的9倍比由十位数字和个位数字组成的两位数小3,试求原来的3位数.
答:书包单价92元,随身听单价360元。最优化决策:聪明的Mike想了想回答正确后便同爸爸去买礼物,恰好赶上商家促销,人民商场所有商品打八折销售,家乐福全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家购买看中的这两样物品,你能帮助他选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?提示:书包单价92元,随身听单价360元。2)在人民商场购买随声听与书包各一样需花费现金452× =361.6(元)∵ 361.6<400 ∴可以选择在人民商场购买。在家乐福可先花现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,共花现金360+2=362(元)。因为362<400,所以也可以选择在家乐福购买。因为362>361.6,所以在人民商场购买更省钱。第五环节:学习反思;(5分钟,学生思考回答,不足的地方教师补充和强调。)
故直线l2对应的函数关系式为y=52x.故(-2,-5)可看成是二元一次方程组5x-2y=0,2x-y=1的解.(3)在平面直角坐标系内画出直线l1,l2的图象如图,可知点A(0,-1),故S△APO=12×1×2=1.方法总结:此题在待定系数法的应用上有所创新,并且把一次函数的图象和三角形面积巧妙地结合起来,既考查了基本知识,又不局限于基本知识.三、板书设计利用二元一次方程组确定一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y=kx+b(k≠0);2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b的值,进而得到一次函数的表达式.通过教学,进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.通过对本节课的探究,培养学生的观察能力、识图能力以及语言表达能力.
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
一、教学目标1.初步掌握“两边成比例且夹角相等的两个三角形相似”的判定方法.2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.3.能够运用三角形相似的条件解决简单的问题. 二、重点、难点1. 重点:掌握判定方法,会运用判定方法判定两个三角形相似.2. 难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.3. 难点的突破方法判定方法2一定要注意区别“夹角相等” 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的.
∴此方程无解.∴两个正方形的面积之和不可能等于12cm2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.
(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
二、合作交流活动一:(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
我园地处农村,教育资源十分丰富。充分利用本地资源,开展低成本高质量的教育一直是我们追求的方向。每年秋季,田间、山头高挂枝头的桔子成了孩子生活中最常见、最熟悉的水果。他们在桔园里嘻戏,观察着桔子由绿变黄,和父母老师一起去摘桔子,桔子的清香让他们难忘。孩子们在摸、闻、尝桔子的过程中,充分运用多种感官感知着桔子,他们发现着桔子的特征;当他们把桔子皮剥开来时,他们的手指需要一定的协调性和力量,手部小肌肉群得到发展和锻炼;因此选择桔子这一孩子们身边熟悉的事物作为教学活动的内容,符合《纲要》提出了的“生活化”“兴趣性”原则。然而,面对中班孩子,随着年龄的增加,生活经验的拓展,他们的探究欲望渐渐强烈,在日常生活中他们对桔子的外形特征已有了基本的认识,已经积累了桔子的基本经验,因此选择《桔子》这一教学内容,如果只是一味的重复关于桔子的基本特征,势必造成集体教学活动的无效,因此,我们从孩子的已有经验出发,从桔瓣排列的环形这一点切入,让孩子们通过观察感知,初步尝试“环形数数”。这一集体教学活动旨在通过多通道的感知,游戏化的学习,激发幼儿对生活中常见事物的兴趣。
教材来源:此次活动来自生活。在秋天这个季节里,蔬菜随处可见,我们取材也非常的方便。蔬菜的品种非常的多,营养价值也非常的丰富,吃法繁多,可以清炒、可以煮汤、可以凉拌、还可以腌着吃,总之,我们的生活里离不开蔬菜。然而,幼儿虽然知道很多的蔬菜,但对蔬菜的种类、用途、营养价值等还不是相当的了解,在我们的日常生活中幼儿不爱吃青菜的现象也是很严重的,加深幼儿对蔬菜的认识,激发幼儿对蔬菜的兴趣,引导幼儿多吃蔬菜是很有必要的。就如《纲要》中所说的,“既符合幼儿园的现实需要,又有利于其长远的发展;既贴近幼儿的生活,选择幼儿赶兴趣的事物和问题,又有助于拓展幼儿的经验和视野。”因此,此次的活动来源于生活,又能够服务幼儿的生活。
孩子们,转转小脑筋猜个小谜语,孩子们的注意力就集中了起来。我就说出了“车“的谜面:四脚圆滚滚,眼睛亮晶晶,嘀嘀一声叫,招手过路人。我的语气重点在嘀嘀一声叫,孩子马上猜出是汽车。然后就问谁是坐车来的?你坐的车是什么颜色?你做的车大?还是小?引导幼儿懂得车给人们带来了方便,就是车的用途了,幼儿园的车都是黄色的,哪辆车是你坐的?孩子立刻回答自己坐的是1号车或者2号车,这就引出了车是有“标志”的。然后在引导幼儿认识几种常见的特殊车辆,出示110,120,119的车辆,让幼儿分别找出车的标志是什么?它的用途,再让幼儿模仿这几种车跑起来的声音,这时的孩子兴趣很高,都乐意学,嘴里发出(危楼危楼)或者(日日)的声音。
教材来源:此活动选材来源于生活。我们都知道,萝卜是幼儿比较熟悉的蔬菜之一,在秋天这个丰收的季节,萝卜在农村菜场等地随处可见,且取材方便。它的品种非常丰富,有白萝卜、胡萝卜、卞萝卜等,其中大小不同、颜色不同、形状不同;它营养丰富,吃法繁多,可煮汤、可凉拌、可红烧、可腌着吃,有的还可生吃呢!民间还有“十月萝卜小人参”的美称。然而幼儿虽然知道萝卜,但对萝卜的种类、用途、营养价值等还不太了解,在日常生活中经常发现幼儿不爱吃萝卜的现象。因此,有必要使幼儿形成对萝卜正确的认识,加深对萝卜的特征、用途等的理解,激发幼儿爱萝卜的情感。我们认为,选择此教材有一定的季节性、必要性,就如《纲要》中所说,“既符合幼儿的现实需要,又有利于其长远发展;既贴近幼儿的生活,选择感兴趣的事物或问题,又有助于拓展幼儿的经验和视野”。因此,此活动来源于生活,又能服务于幼儿的生活。
健康教育是幼儿教育的重要内容,拥有健康的心理和强壮的身体才是一个健康的孩子,而幼儿龋齿已非常普遍,严重影响了幼儿的生活,教育幼儿养成早晚刷牙的良好卫生习惯是预防龋齿的关键。本次活动根据幼儿的年龄特点,通过动画、歌曲和儿歌来教育幼儿养成早晚刷牙的好习惯及掌握正确的刷牙方法,使幼儿成为一个讲卫生的好娃娃。新《纲要》中明确要求:“幼儿园必须把保护幼儿的生命和促进幼儿的健康放在工作的首位。既要满足幼儿受照顾的需要,又要尊重和满足他们不断增长的独立需要,鼓励并指导幼儿自理、自立的尝试。”本活动有效地满足了幼儿的独立需要,培养了幼儿的自理能力,使幼儿拥有健康的身体。
小班孩子的认知活动是从观察生活的点滴、身边熟悉的事物开始的。香蕉是幼儿日常生活中常见的,是他们喜欢吃的水果。开学初,我们小一班的孩子对自然角上摆放的几个香蕉特别感兴趣,一有空就去光顾了,在那里看一看、玩一玩,对它冲满了好奇,当我们关注到这一现象后,便积极地参与其中。在探索中,我们发现香蕉不同的摆放形状,会像许多有趣的东西。如:朝上翘翘的香蕉会像小船、小床、木马、月亮、滑滑梯、嘴巴……朝下弯弯的香蕉会像彩虹、眉毛、小桥、伞面……放在头上、脸上或拿在手里玩一玩,会像胡子、大像的鼻子、羊角、牛角、小兔的耳朵、手枪、镰刀、电话机……这些丰富的想象物都是来自于孩子们日常生活中比较熟悉的,并且能关注到的现象和事物,因此从孩子的经验性和兴趣性出发,便生成了《有趣的香蕉》这一综合活动,使孩子能在想想、说说、玩玩、吃吃的过程中获得思维、语言、情感的发展。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。