1.关于二次根式的概念,要注意以下几点:(1)从形式上看,二次根式是以根号“ ”表示的代数式,这里的开方运算是最后一步运算。如 , 等不是二次根式,而是含有二次根式的代数式或二次根式的运算;(2)当一个二次根式前面乘有一个有理数或有理式(整式或分式)时,虽然最后运算不是开方而是乘法,但为了方便起见,我们把它看作一个整体仍叫做二次根式,而前面与其相乘的有理数或有理式就叫做二次根式的系数;(3)二次根式的被开方数,可以是某个确定的非负实数,也可以是某个代数式表示的数,但其中所含字母的取值必须使得该代数式的值为非负实数;(4)像“ , ”等虽然可以进行开方运算,但它们仍属于二次根式。2.二次根式的主要性质(1) ; (2) ; (3) ;(4)积的算术平方根的性质: ;(5)商的算术平方根的性质: ;
尊敬的各位领导,各位老师,亲爱的同学:今天,我很荣幸作为一名学生代表,在这里发言。记得有一首歌中唱到:“把握生命里的每一分钟,全力以赴我有心中的梦……”梦对于我们每个人来说,是宠着轻纱的梦,是罩着薄雾的梦,是绕着细丝的梦,小溪梦想越过百川,奔流入海;游鱼梦想逆流而上,跳过龙门;飞鸟梦想展翅高飞,直上云霄……梦,一个神秘的映象,它令我们魂牵梦绕,可望而不可及。但它却是支持我们不断前进的原动力,是牵引我有生命之舟的灯塔。我们之所以甘愿顶风冒雪往返于学校和家的两点一线,是因为心中有梦;我们之所以能在45分钟的课堂上聚精会神,是因为心中有梦;我们之所以承受寂寞与孤独的侵扰,是因为心中有梦……
解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学
【教学目标】1.经历从不同方向观察物体的活动过程,发展空间观念;能在与他人交流的过程中,合理清晰地表达自己的思维过程.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的图形.3.能识别简单物体的三视图,会画立方体及其简单组合体的三视图.【基础知识精讲】1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.如何画三视图 当用若干个小正方体搭成新的几何体,如何画这个新的几何体的三视图?
(4)从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势;从获胜场数看,甲队胜三场,乙队胜两场,甲队成绩较好;从方差看,甲队比赛成绩比乙队比赛成绩波动小,甲队成绩较稳定.综上所述,选派甲队参赛更能取得好成绩.方法总结:本题是反映数据集中程度与离散程度的综合题.从图形中得到两队的成绩,然后从平均数、方差的角度来考虑,在平均数相同的情况下,方差越小的越稳定.三、板书设计数据的离散程度极差:一组数据中最大数据与最小数据的差方差:各个数据与平均数差的平方的平均数 s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]标准差:方差的算术平方根 公式:s=s2经历表示数据离散程度的几个量的探索过程,通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力.通过小组合作,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系.
当Δ=l2-4mn<0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个点P;当Δ=l2-4mn=0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的两个点P;当Δ=l2-4mn>0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的三个点P.方法总结:由于相似情况不明确,因此要分两种情况讨论,注意要找准对应边.三、板书设计相似三角形判定定理的证明判定定理1判定定理2判定定理3本课主要是证明相似三角形判定定理,以学生的自主探究为主,鼓励学生独立思考,多角度分析解决问题,总结常见的辅助线添加方法,使学生的推理能力和几何思维都获得提高,培养学生的探索精神和合作意识.
解:由题意得a+b=0,cd=1,|m|=6,m=±6;∴(1)当m=6时,原式=06-1+6=5;(2)当m=-6时,原式=0-6-1+6=5.故a+bm-cd+|m|的值为5.方法总结:解答此题的关键是先根据题意得出a+b=0,cd=1及m=±6,再代入所求代数式进行计算.探究点三:有理数乘法的应用性问题小红家春天粉刷房间,雇用了5个工人,干了3天完成;用了某种涂料150升,费用为4800元,粉刷的面积是150m2.最后结算工钱时,有以下几种方案:方案一:按工算,每个工100元;(1个工人干1天是一个工);方案二:按涂料费用算,涂料费用的30%作为工钱;方案三:按粉刷面积算,每平方米付工钱12元.请你帮小红家出主意,选择哪种方案付钱最合算(最省)?解析:根据有理数的乘法的意义列式计算.解:第一种方案的工钱为100×3×5=1500(元);第二种方案的工钱为4800×30%=1440(元);第三种方案的工钱为150×12=1800(元).答:选择方案二付钱最合算(最省).方法总结:解此题的关键是根据题意列出算式,计算出结果,比较得出最省的付钱方案.
解析:∵ab>0,根据“两数相除,同号得正”可知,a、b同号,又∵a+b<0,∴可以判断a、b均为负数.故选D.方法总结:此题考查了有理数乘法和加法法则,将二者综合考查是考试中常见的题型,此题的侧重点在于考查学生的逻辑推理能力.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计可以采用课本的引例作为探究除法法则的过程.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.并讲清楚除法的两种运算方法:(1)在除式的项和数字不复杂的情况下直接运用除法法则求解.(2)在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.
方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.三、板书设计加法法则(1)同号两数相加,取与加数相同的符号,把绝对 值相加.(2)异号两数相加,取绝对值较大加数的符号,并 用较大的绝对值减去较小的绝对值.(3)互为相反数的两数相加得0.(4)一个数同0相加,仍得这个数.本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,把学生从被动学习变为主动想学.在本节教学中,要坚持以学生为主体,教师为主导,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.
拥有和谐的人际关系尊敬的老师、亲爱的同学们:大家早上好!今天我讲话的题目是《拥有和谐的人际关系》。随着社会的发展,健康越来越被人们重视,一个人的健康既包括身体健康,又包括心理健康,单纯地追求身体健康而忽视心理健康,不仅会导致精神疾病的发生,而且会诱发多种身体疾病。今天我们就从人际关系方面的心理健康来和大家进行交流。在我们的校园生活中,我们常常可以看到许多同学因为一点小事,和其他同学闹别扭,或大吵大闹,甚至动拳脚。而有的同学在校园里由于任性,有好东西不愿与人分享、别人有事不愿助人,加之脾气暴躁等,造成同学之间的关系紧张,给学习、生活带来不利影响。美国著名的人际关系专家卡耐基指出:一个人事业的成功,只有15%是由于他的专业技术,另外的85%要靠人际关系和处世技巧。由此可见和谐的人际关系式何等重要。那么,作为中学生,如何学会和他人和谐相处呢?我想,拥有健康的心理至关重要。
这是形成共识的会议。共同探讨如何围绕围绕市委、市政府的决策部署和中心工作,就专题专项工作达成共识,共同推进劳动就业、工资福利、职业安全卫生保障等与职工利益直接相关工作。这是做实事好事的会议。会议为职工、为劳模办好事,做实事,进一步调动职工群众的积极性,充分发挥他们的主力军作用和引领带动作用。采取有效措施,解决经济社会发展和深化改革中职工普遍关心和迫切需要解决的热点、难点问题,共商协调处理劳动关系矛盾,维护社会稳定。从这个意义上说,联席会议坚持下去,为政府开辟了一条联系群众的重要渠道;
首先,联席会议是政府联系职工群众、工会参政议政的好形式。这是形成共识的会议。共同探讨如何围绕围绕市委、市政府的决策部署和中心工作,就专题专项工作达成共识,共同推进劳动就业、工资福利、职业安全卫生保障等与职工利益直接相关工作。这是做实事好事的会议。会议为职工、为劳模办好事,做实事,进一步调动职工群众的积极性,充分发挥他们的主力军作用和引领带动作用。
首先,联席会议是政府联系职工群众、工会参政议政的好形式。这是形成共识的会议。共同探讨如何围绕围绕市委、市政府的决策部署和中心工作,就专题专项工作达成共识,共同推进劳动就业、工资福利、职业安全卫生保障等与职工利益直接相关工作。这是做实事好事的会议。会议为职工、为劳模办好事,做实事,进一步调动职工群众的积极性,充分发挥他们的主力军作用和引领带动作用
国旗下的讲话:与安全同行建和谐校园什么是幸福,可能一百个人有一百个答案,甚至更多,有人认为吃穿不愁是幸福;有人认为有个好工作是幸福,但我认为安全是最大的幸福。得出这个结论并不是一时激动,耸人听闻,而是一件件血与泪的故事给我们的教训。在刚刚过去的XX年12月31日23时35分,我国上海外滩发生了一件震惊全国的踩踏事件,在当天成千上万来观看黄浦江两岸灯光秀的人群中,36条鲜活的生命瞬间就终止在新年钟声敲响的前夕,49人受伤,据统计遇难者平均年龄只有22岁。而在XX年9月28日14时30分,云南昆明XX小学也发生踩踏事件。当时XX小学体育老师把两块上体育课时用的海绵垫子,临时靠墙放在学生午休的宿舍楼通道,学校起床铃拉响后,午休学生起床返回教室上课,在下楼过程中,由于靠墙的一块海绵垫倒在通道,造成通道不畅,先下楼的学生在通过海绵垫时,发生跌倒,后来,学生不清楚情况,继续向前拥挤,造成相互叠加挤压,最后导致学生6人死亡,26人受伤。
一、单项选择题1.违法行为是指出于过错违法法律、法规的规定,危害社会的行为。下列违法行 为属于行政违法行为的有 ( )①欠债不还 ②谎报险情 ③殴打他人 ④故意杀人A.①② B.②③ C.①③ D.③④2.一般违法行为和犯罪的共同点是 ( )A.都违反了民事法律 B.都要受到刑罚处罚C.承担相同法律责任 D.都具有社会危害性3.“人生不能越界,底线必须坚守”。这句话说明人们行为的底线是 ( )A.守诚信 B.讲道德 C.不违法 D.懂礼仪4.犯罪的最本质特征是 ( )A.严重社会危害性 B.刑事违法性C.应受刑罚处罚性 D.触犯法律性 5.初中生小辉因沉迷网络游戏,经常偷父母的钱。后来发展为盗窃,走上了违法犯罪的道路。这告诉我们 ( )①不良行为必然会发展成违法犯罪行为②网络游戏有害健康,我们应远离网络③预防违法犯罪需要强化防微杜渐意识④要理性参与网络生活,做网络的主人A.①② B.②③ C.①③ D.③④
【主题目标】1、培养良好的生活习惯、卫生习惯和参加体育活动的兴趣。”2、充分挖掘各种现有的或潜在的教育资源,配合幼儿,为教育教学的顺利开展起到了很好的促进、整合作用。3、喜欢参加体育活动,动作协调、灵活,能与同伴协商共同完成目标与任务。4、利用图书、图片、网络进行提问、查找、调查、归纳,注意运动安全,有初步保护自己的意识,知道自我保护的简单方法。【活动准备】通过谈话了解幼儿喜欢的各种体育项目,根据需要从网上、图书里细致了解有关运动的各种名称与玩法,并充分发挥家长、社区资源。在家长方面,我们根据幼儿园家长情况,采用幼儿写信的方法,将我们活动的设想与要求,用孩子的话来告诉他们,让他们能全面地了解并支持我们活动的开展。【活动过程】1、教师通过谈话,了解幼儿最喜欢的体育运动。幼儿:我喜欢踢足球。幼儿:我喜欢跑步。
二.思考:(-2) 可以写成-2 吗?( ) 可以写成 吗?(指名学生回答,师生共同总结:负数和分数的乘方书写时,一定要把整个负数和分数用小括号括起来)三.计算:①(-2) ,②-2 ,③(- ) ,④ (叫4个学生上台板演,其他练习本上完成,教师巡视,确保人人学得紧张高效).(四)讨论更正,合作探究1.学生自由更正,或写出不同解法;2.评讲思考:将三题①③中将底数换成为正数或0,结果有什么规律?学生总结:负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都为0。有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.乘方的含义:①表示一种运算;②表示运算的结果.
讨论归纳,总结出多个有理数相乘的规律:几个不等于0的因数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个因数为0,积就为0。(2)几个不等于0的因数相乘时,积的绝对值是多少?(生:积的绝对值是这几个因数的绝对值的乘积.)例2、计算:(1) ;(2) 分析:(1)有多个不为零的有理数相乘时,可以先确定积的符号,再把绝对值相乘;(2)若其中有一个因数为0,则积为0。解:(1) = (2) =0练习(1) ,(2) ,(3) 6、探索活动:把-6表示成两个整数的积,有多少种可能性?把它们全部写出来。(三)课堂小结通过本节课的学习,大家学会了什么?(1)有理数的乘法法则。(2)多个不等于0的有理数相乘,积的符号由负因数的个数决定。(3)几个数相乘时,如果有一个因数是0,则积就为0。(4)乘积是1的两个有理数互为倒数。(四)作业:课本作业题
师生共同归纳法则2、异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。生5:这两天的库存量合计增加了2吨。(+3)+(-1)=+2 或(+8)+(-6)=+2师:会不会出现和为零的情况?提示:可以联系仓库进出货的具体情形。生6:如星期一仓库进货5吨,出货5吨,则库存量为零。(+5)+(-5)=0师生共同归纳法则3、互为相反数的两个数相加得零。师:你能用加法法则来解释法则3吗?生7:可用异号两数相加的法则。一般地还有:一个数同零相加,仍得这个数。小结:运算关键:先分类运算步骤:先确定符号,再计算绝对值做一做:(口答)确定下列各题中和的符号,并说明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 计算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:请四位学生板演,让学生批改并说明理由。
内容:情景1:多媒体展示:提出问题:从二教楼到综合楼怎样走最近?情景2:如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?意图:通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情.效果:从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础.第二环节:合作探究内容:学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.