1、通过游戏使幼儿熟练掌握双脚蹦跳步、单脚蹦跳步、踵趾小跑步(以下简称“三个舞步”)。2、培养幼儿创编舞蹈的兴趣及自觉遵守游戏规则的良好习惯。活动准备:1、拟人化的跳跳糖头饰与幼儿人数相等。2、实物跳跳糖若干,玩具电话一部。3、在活动室一端画一张“巨人”张大的嘴巴。4、已学过歌曲《跳跳糖》。
活动目标:1、体验穿大鞋游戏的快乐。2、感受大鞋踏出的不同声音,培养幼儿的音乐感受力。3、尝试创编出不同的节奏,发展幼儿的想像力。活动准备:1. 室外环境 2. 报纸、挂历纸、 硬纸板、木板、塑料布、铁盒、铁盖、塑料瓶等3. 音乐磁带一盒、小鼓一面活动过程: 一、充分感受1、引导幼儿发现穿上大鞋踏在不同物体上的会有不同的声音,丰富幼儿的感受。教师:今天你穿谁的鞋子?幼儿:(我穿妈妈的高跟鞋、爸爸的皮鞋、姐姐的运动鞋、奶奶的布鞋、妈妈的靴子……) 2、教师:我们穿上大鞋从活动室走出来有什么感觉?幼儿:(脚上感觉非常松、很暖和、很舒服、很爽;踏起来声音很响;脚有些穿不稳当;人变高了;觉得有些站不稳好像要摔倒;像走在小山坡一样、像踮着脚尖走路)
【幼儿分析】 中班的孩子语言表达能力已经有所提高,积累了一定的生活经验,对事物有了一定的分析能力,他们能够积极主动地进行参与,喜欢探索,喜欢帮助别人,活动中以点点和咪咪为小白兔白白过生日为主线,激发了孩子的好奇心,点点和咪咪怎么联系小白兔呢?请孩子帮忙想办法,孩子们很乐意去帮助别人。这个问题本身来源于幼儿生活,每逢节假日幼儿喜欢“走亲访友”,成人有时会说:不知道在不在家。孩子会说:打个电话联系联系吗。成人也很少意识到这个问题的创新价值,很少同孩子一起探讨怎样联系这个话题,孩子们的经验知识停留在一个表层,这就需要教师为孩子设置一个情景,让孩子置身于特定的环境进行创新思维,以此来开发幼儿的智力,培养幼儿的创新思维能力。【设计思路】 本节课以点点和咪咪相约为小白兔白白过生日为导入口,引起幼儿兴趣,点点和咪咪用什么方式跟小白兔白白联系呢?幼儿积极为它们“献计献策”,开动脑筋想办法,在教师的语言引导下,让幼儿进行分层次扩散思维活动,如果点点和咪咪想亲自去小白兔家联系,怎么去?如果点点和咪咪不想亲自去小白兔家又会用什么办法进行联系呢?在幼儿分层次进行扩散思维的基础上,让幼儿分组进行实践活动,在动脑、动手操作的过程中,让孩子们的创新思维想法得到证实。最后一个环节,给幼儿一个机会,让幼儿把自己的创新活动用语言表达出来,这样孩子们之间有了一个交流和互动的机会,这个环节锻炼了幼儿的语言表达能力。
活动过程:1、师生开车进入教室。①听音乐开车进入教室。②提问:路边有什么店?这是谁的面包房呢?2、教师示范表演。①教师以面包师的身份出现。②教师表演并朗诵节奏儿歌。③引导幼儿回忆儿歌中烤面包的过程。
活动目标:学念儿歌,体会儿歌段落停顿与押韵的感觉。知道一年中有12个月的含义,初步获得年和月的概念。动知道自己的年龄,并能用相似的数来表征。设计生日蜡烛,培养幼儿的创造性。活动准备:儿歌:《我几岁》(请参见幼儿用书)。1—12月份的生日蛋糕图卡【附1】;纸张、画笔等美工材料。
3、录像带一盒(大班幼儿对应的配戴各种垃圾进行表演)4、旧报纸、酸奶杯、胶袋、纸盒、布碎等。三、教学过程:1、教师做扫垃圾的动作,出示充满垃圾的垃圾筒,引出课题。教师引导:“小朋友看到我现在干什么呢?(扫垃圾)老师看到地面有这么多垃圾觉得很不干净,很不舒服,我要把地面清洁干净,把垃圾扫进垃圾筒里,你们看垃圾筒里面有这么多的杂物废品。嘘,请小朋友们认真地听一听,他们说了些什么呢?”2、教师完整讲述故事“垃圾的悄悄话”,丰富词汇。提问:(1)刚才有什么垃圾在说话?(2)旧报纸为什么会说自己还很有用呢?(3)废旧物品还能有用吗?有些什么用呢?3、观看大班幼儿的情境表演,再听第二遍故事。提问:(1)你们看到马路上的垃圾从哪里来的?(2)为什么会有这么多垃圾?
2.熟悉人们常喝的水的种类和口感,还有什么水可以喝。 活动过程: 1.说一说自己喝过的水,是什么需要才喝的,口感怎样。 2.老师把喝过的水,利用图片做向导进行归类:水类、水果汁类、奶类。看看孩子们会不会用归类方法,对的,给予及时鼓励,错的,有经验的小朋友提醒。 3.归类后孩子们讨论:各类水从哪里来?味道怎样?留下悬念,等到品尝时验证。思维扩散练习:其实水果里也有水的:椰子、雪梨、葡萄等。 4.把标签揭下来,从图案中关注名称、产地、有无关于收集瓶子的环保标志。然后贴在墙上,大家互相欣赏,展示“百家水”标签艺术性。
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
活动内容:教师首先让学生回顾学过的三类事件,接着让学生抛掷一枚均匀的硬币,硬币落下后,会出现正面朝上、正面朝下两种情况,你认为正面朝上和正面朝下的可能性相同吗?(让学生体验数学来源于生活)。活动目的:使学生回顾学过的三类事件,并由掷硬币游戏培养学生猜测游戏结果的能力,并从中初步体会猜测事件可能性。让学生体会猜测结果,这是很重要的一步,我们所学到的很多知识,都是先猜测,再经过多次的试验得出来的。而且由此引出猜测是需通过大量的实验来验证。这就是我们本节课要来研究的问题(自然引出课题)。
(2)依托各方力量,办好家长学校 学校要重视家长学校这块教育主阵地的建设。首先成立家长学校领导机构——家长委员会,做到定期召开家长委员会会议,通报学校工作计划及取得的成绩、听取家长委员会成员的合理化建议等。依托家长委员会,组织专题研讨,为家校沟通、亲子沟通提供平台。同时从家庭教育的视角,与家长们一起思考如何提高教育的有效性。 为加强教育的效果,一方面学校要求教师访问学生家庭,作好了解、协调工作,防微杜渐。另一方面,还要通过家长学校这种组织机构治标治本,对学生家长有针对、有系统、分层次地进行家庭教育的辅导,通过家长会、辅导讲座、交流会、家长信、校刊小报等多种途径和手段,帮助家长树立正确、新型的家庭教育观念,传授家长科学、合理的育人常识和技巧,提高家庭教育水平。
问题1:你能证明“两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行”这个命题的正确性吗?已知:如图,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2.求证:a∥b. 问题2:你能证明“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”这个命题的正确性吗?已知:如图,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补.求证:a∥b
2、通过画影子,观察太阳与影子的关系,了解影子变化的原因。【活动准备】 1、幻灯机(或手电筒)、不透光的各种物体。 2、粉笔、玩具若干。 【活动过程】 一、影子是怎样产生的。 带领幼儿散步,找影子。请幼儿观察什么地方有影子,什么地方没有影子,发现了什么东西的影子? 1、室内谈话:幼儿漫谈散步时的发现。 小结:太阳光下有影子,阴暗处没有影子。 2、小实验:影子的产生。 (1)打开幻灯机(或手电筒),将光投到墙上,问幼儿:墙上有影子吗? (2)将玩具狗挡住光线,问幼儿:现在墙上有影子吗?为什么?(玩具狗挡住了光线,所以出现了影子) (3)将幻灯机(或手电筒)关掉,问幼儿:现在墙上有影子吗?为什么?(没有光,有物体,也不会产生影子)
(一)、亚太经济合作组织的宗旨和作用1、亚太经合组织简介:(1)、地位——当今世界最大的区域性经济合作组织(2)、性质——是促进亚太国家和地区经济合作、推动共同发展的主要机构。亚太经济合作组织(APEC,简称亚太经合组织),是当今世界最大的区域性经济合作组织,是促进亚太国家和地区经济合作、推动共同发展的主要机构。相关链接:1989年11月,在澳大利亚的倡议下,澳大利亚、美国、加拿大、日本、韩国、新西兰和东盟六国的外交与经济部长在澳大利亚首都堪培拉召开部长级会议,正式宣告亚太经合组织成立。此后,该组织不断扩大,到2004年底共有21个成员,既有美国、日本等发达国家,也有中国、马来西亚、墨西哥等发展中国家。亚太经合组织的宗旨是:为本地区人民的共同利益而保持经济的增长与发展,促进成员间经济的相互依存,加强开放的多边贸易体制,减少区域贸易和投资壁垒。
本节课的设计是以教学大纲和教材为依据,遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。本节课采用教具辅助教学,旨在呈现更直观的形象,提高学生的积极性和主动性,并提高课堂效率。2、学法研究“赠人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,通过基础练习、提高练习和拓展练习发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
设计说明:设计这组测验为了反馈学生学习情况,第1题较简单,也是为了让提高学生学习士气,体会到成功的快乐;第2题稍微有点挑战性,利用直角三角形外心位置规律解答,也满足不同层次学生的不同需求.教师可们采用抢答方式调动学生积极性,学生抢答,师生共同反馈答题情况,教师最后出示正确答案并做总结性评价.环节十:布置作业课件演示: 拓展延伸1.思考:经过4个(或4个以上的)点是不是一定能作圆?2.作业:A层 课本118页习题A组1,2,3; B层 习题B组.设计说明:设计第1题的原因保证了知识的完整性,学生在探究完三个点作圆以后,肯定有一个思维延续,不在同一直线上三个点确定一个圆,四个点又会怎样?四个点又分共线和不共线两种情况,不共线的四点作圆问题又能用三点确定一个圆去解释,本题既应用了新学知识,又给学生提供了更广泛地思考空间.第2题,主要是让学生进一步巩固新学知识,规范解题步骤. 在作业设计时,既面向全体学生,又尊重学生的个体差异,以掌握知识形成能力为主要目的.
设计意图这一组习题的设计,让每位学生都参与,通过学生的主动参与,让每一位学生有“用武之地”,深刻体会本节课的重要内容和思想方法,体验学习数学的乐趣,增强学习数学的愿望与信心。4.回顾反思,拓展延伸(教师活动)引导学生进行课堂小结,给出下列提纲,并就学生回答进行点评。(1)通过本节课的学习,你学会了哪些判断直线与圆位置关系的方法?(2)本节课你还有哪些问题?(学生活动)学生发言,互相补充。(教师活动)布置作业(1)书面作业:P70练习8.4.41、2题(2)实践调查:寻找圆与直线的关系在生活中的应用。设计意图通过让学生课本上的作业设置,基于本节课内容和学生的实际,对课后的书面作业分为三个层次,分别安排了基础巩固题、理解题和拓展探究题。使学生完成基本学习任务的同时,在知识拓展时起激学生探究的热情,让每一个不同层次的学生都可以获得成功的喜悦。
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
此探究活动的目的是为了说明马克思主义哲学是科学完整的体系。在探究活动时可以首先向学生简单介绍西方哲学的发展历史,使学生对马克思主义哲学在整个西方哲学中的位置和地位有个大致了解。离开了这个大的背景,学生对马克思主义哲学就容易摸不着头绪。马克思主义哲学之前的唯物主义的局限性表现在:古代朴素的带有辩证法性质的唯物主义主要是追问世界的本原问题,这时的哲学缺乏近代科学作为基础,因此它更多的是一种猜测。它虽然看到了世界的联系和变化,但它还无法理解联系和变化背后的基础和原因。近代形而上学的唯物主义主要是追问人的认识问题,即人的认识的来源是什么,是什么保证人的认识的可靠性。但它对人的认识问题的解决主要是立足于对世界的一种直观观察,认为人的认识来源于对世界的直观的、机械的反映。它不理解人的实践活动,不理解人是在改造世界的过程中认识世界,人的认识是在实践基础上的能动反映。
教学重点难点:1、哲学与时代的关系(重点)2、马克思主义哲学是科学的世界观和方法论(重点)3、实践的观点在马克思主义哲学中占有重要的地位和作用(重点、难点)4、马克思主义中国化的三大理论成果(重点)教学课时安排:3课时【导入新课】德国人和中国人一同坐火车从德国的法兰克福去巴黎。途中上来一位客人,这位客人将手里端着的鱼缸放在空座上。德国人开始发问:“您能告诉我这鱼的名称吗?它在生物学上属于什么类别?它在科学上的意义又是什么?”中国人则问:“这种鱼是红烧好吃,还是清蒸更好吃一点?”这一故事体现了中西方思维方式的差异,这一差异也折射出中西方哲学上的差异。西方哲学起源于古希腊哲学,表现为对各种现象之后的原因的关注和对确定性的追求,强调理性认知。中国哲学主要是儒家哲学,主要集中在政治伦理方面,表现为对人的关怀和规范,强调感性体验。中西方哲学为何出现这样的差异?哲学与政治、经济有怎样的关系?
1、顺应时代需求,力保任务开展自20**年第十三届全国人大一次会议表决通过《中华人民共和国监察法》以来,国家反腐败工作深入开展,纪监委在开展审查调查的过程中,公安机关结合工作实际,从各个不同部门抽调看护人员,一方面,会给其他部门完成其本身的日常工作带来压力,另一方面会因为各自日常任务性质的不同导致看护人员专职不专,队伍不稳定,在执行看护任务时存在管理不严、业务不精、队伍松散等问题。因此,为了确保留置看护任务的顺利开展,成立一支更为规范化、专业化的看护队伍势在必行。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。