提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

人教版高中政治必修2国际社会的成员:主权国家和国际组织教案

  • 人教版高中数学选修3排列与排列数教学设计

    人教版高中数学选修3排列与排列数教学设计

    4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).

  • 人教版高中数学选修3超几何分布教学设计

    人教版高中数学选修3超几何分布教学设计

    探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.

  • 人教版高中数学选修3二项式定理教学设计

    人教版高中数学选修3二项式定理教学设计

    二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中数学选修3全概率公式教学设计

    人教版高中数学选修3全概率公式教学设计

    2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?

  • 人教版高中数学选修3条件概率教学设计

    人教版高中数学选修3条件概率教学设计

    (2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.

  • 人教版高中数学选修3正态分布教学设计

    人教版高中数学选修3正态分布教学设计

    3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.

  • 国际志愿者日国旗下讲话稿:让志愿服务播洒爱心

    国际志愿者日国旗下讲话稿:让志愿服务播洒爱心

    老师们、同学们:我是七年级十二班的x,今天我国旗下讲话的题目是:让志愿服务播洒爱心。我们常常在社会公益活动中看到志愿者的身影。志愿服务是一种热心公益,无私奉献的行为。志愿服务离我们并不远,只要你是一个有爱心的人都能成为志愿者。我们中学生也应从现在做起,从自己做起,踊跃地加入到志愿者的行列中。志愿精神是我们中学生社会责任感的体现,展现了我们的精神风貌。前不久,我们学校成立了“金牧笛志愿服务队”,学生会的成员都积极地加入了其中。开展了各种志愿活动,如:“讲文明、树新风”文明劝导活动,主动制止身边不文明的行为;植绿护绿活动。还可以组织学校的志愿者去社区打扫环境卫生,宣传交通规则等。

  • 关于总工会社会联络部社会组织处处长挂职锻炼工作总结

    关于总工会社会联络部社会组织处处长挂职锻炼工作总结

    二是树立问题意识。问题是事物矛盾的直观反映,是实践发展的有力引导,抓住了主要问题,就找到了工作的着力点和突破口。实践中有什么问题,我们在工作中就要研究什么问题,努力解决什么问题。这是最朴实的方法论。比如,关于简化报表的问题。在调查研究中,基层同志反映,工会系统数据库要整合共享,不能都分头管理,多头要数据,重复要数据,还有大量的日常检查填表、统计报表,基层不堪重负,影响队伍力量办实事,“填表不等于工作”,实干才能服务职工。三是注重基层导向。基层是工会全部工作的基础。×市总工会高度重视基层,率先在乡镇街道全部建立总工会,率先明确乡镇街道总工会经费留成×%,率先在乡镇街道全部建立工会服务站,并由市区两级工会分担聘用专职工会社会工作者,有了一支专门的基层工会工作者队伍,保障了基层工会作用发挥。做实基层,夯实基础,工作才能落到实处,工会才能扎根职工群众之中。

  • 人教A版高中数学必修一单调性与最大(小)值教学设计(2)

    人教A版高中数学必修一单调性与最大(小)值教学设计(2)

    《函数的单调性与最大(小)值》是高中数学新教材第一册第三章第2节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。学生在初中已经学习了一次函数、二次函数、反比例函数的图象,在此基础上学生对增减性有一个初步的感性认识,所以本节课是学生数学思想的一次重要提高。函数单调性是函数概念的延续和拓展,又是后续研究指数函数、对数函数等内容的基础,对进一步研究闭区间上的连续函数最大值和最小值的求法和实际应用,对解决各种数学问题有着广泛作用。课程目标1、理解增函数、减函数 的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.数学学科素养

  • 部编人教版一年级下册《动物王国开大会》说课稿

    部编人教版一年级下册《动物王国开大会》说课稿

    二、语言活泼、对话生动。课文主要出现了老虎、狗熊、狐狸、大灰狼和梅花鹿五种动物。每种动物的语言描绘出的动物形象符合人们心目中动物形象。如“拿着喇叭大声喊……一连喊了十遍”,伸了伸舌头,做了个鬼脸,连忙说:“对,对,对!”“捶捶自己的脑袋”勾画出了一个拿着喇叭大声喊、可爱又憨厚的狗熊。又如老虎的语言中“快去”“再去”等词语体现了老虎是森林大王的威严。文中动物的语言有特点,标点也有特点。如狗熊四次发布通知,都是以感叹号结尾,带有命令、感召的语气,随着内容越来越具体、清楚,语气也越来越强烈,最后一次通知中出现了2个感叹号!祈使句主要集中在狗熊和老虎说的话中。这是狗熊四次发布通知的内容,这四次通知,带有号召、命令的语气,随着发布的内容越来越具体、清楚,语气也越来越强烈!

  • 部编人教版一年级下册《动物王国开大会》(说课稿)

    部编人教版一年级下册《动物王国开大会》(说课稿)

    三、说教法与学法说教法:教学效果的成败取决于教学方法是否得当。在教学过程中我运用了多种方法进行教学,具体方法有:在认读生字时主要让学生采用自由拼读,小老师领读,指名读,齐读,抢读等不同方式对生字进行识记。在组织学生对课文的朗读时,我主要采用了自由读,同桌两人互读,指名读等方法。说学法:根据一年级学生特点及本节课的目标,本节课主要指导学生采用自主探究、合作交流、成果展示法的学习方法,开展学习活动。四、说教学过程为了更好、更有效地落实教学目标,突出重点,突破难点,我的教学流程有以下四大板块。(一) 情境导入,激发兴趣1.导课环节,首先利用多媒体向学生播放老虎、狗熊、狐狸、梅花鹿等图片,并配以音乐,让学生根据图片说出动物的名字,在轻松、愉悦的氛围中进入新课的学习——《动物王国开大会》。2.在板书课题时,相机教学“动物”的“物”字,在这里要读轻声,认识牛字旁。3.再次齐读课题。

  • 人教部编版道德与法制六年级上册国家机构有哪些说课稿

    人教部编版道德与法制六年级上册国家机构有哪些说课稿

    活动三:政府机关、监察机关和司法机关的职权 首先,学生阅读教材第46 页的图文资料,结合课前搜集到的有关人民政府的资料, 教师引导学生说一说行政机关有哪些?其职权是 什么?板书:行政管理职权,提供公共服务。然后,学生从教材第 47 页中找出监察机关和司法机关职权的相 关信息,并了解司法机关徽章的含义。板书:监察权,审判权,监督 权。最后,结合活动园中三名同学对法院可以审理哪些类型案件的争 议,先小组内讨论交流, 你认为法院可以审理哪些类型的案件?再全 班汇报交流,教师相机引导。设计意图:引导学生了解政府机关、 监察机关和司法机关的职权,知道人民法院可以审理哪些类型的案件。环节三:课堂小结,内化提升 学生谈一谈学习本节课的收获,教师相机引导。 设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸课后,以国家机关的职权为主题办一期手抄报。

  • 关于校园弘扬爱国主义教育学习心得体会八篇

    关于校园弘扬爱国主义教育学习心得体会八篇

    肩负着实现中华民族伟大复兴的大家,要热爱祖国的大好河山,积极维护祖国的主权独立和领土完整,祖国的领土寸土不能丢,不能被分裂侵占;要热爱祖国的历史和文化,提高民族自尊心和自信心,为创造更加辉煌的民族文化而尽心尽力。今天,我国已步入新的历史时期,加入世贸组织使我国与世界各国的联系更加密切,机遇与挑战并存,大家将面临越来越多的新情况、新问题。推进我国改革开放的伟大事业,加快社会主义现代化建设的进程,更需要大家不断弘扬爱国主义的优良传统。只有这样,中华民族才能重振雄风,为人类文明与进步做出更大的贡献。

  • 人教版新课标小学数学二年级上册排列、组合 说课稿2篇

    人教版新课标小学数学二年级上册排列、组合 说课稿2篇

    活动四:握手游戏这一环节,我先和一个学生握手,并用甲--乙表示我和刚才那个学生,中间用连线的方式数出我们握了一次手。随后,问题提升:假如有三个小朋友,每两人只握一次手,共握几次手?我先让学生猜想会有几次?然后请三个小朋友上台操作验证,并用数学符号代表三个小朋友,请一个小朋友用连线的方式数。最后提问:同样是3,为什么3个数字可以摆6个两位数,而三个人却只能握三次手?让小朋友通过感悟握手是两个人完成的行为,与位置无关,初步理解简单事物排列与组合的不同。活动五:搭配衣服这一环节,我让学生自主连线搭配,然后请一生上台边连线边介绍,让学生用有序思考的方式解决生活中的实际问题。活动六:买东西这一环节,我让学生在仔细读题的基础上,通过同桌讨论,有序地总结出四种不同的付钱方式,可以从5角考虑起,也可以从1角考虑起。

  • 人教版高中数学选修3分类加法计数原理与分步乘法计数原理(2)教学设计

    人教版高中数学选修3分类加法计数原理与分步乘法计数原理(2)教学设计

    当A,C颜色相同时,先染P有4种方法,再染A,C有3种方法,然后染B有2种方法,最后染D也有2种方法.根据分步乘法计数原理知,共有4×3×2×2=48(种)方法;当A,C颜色不相同时,先染P有4种方法,再染A有3种方法,然后染C有2种方法,最后染B,D都有1种方法.根据分步乘法计数原理知,共有4×3×2×1×1=24(种)方法.综上,共有48+24=72(种)方法.故选B.答案:B5.某艺术小组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?解:由题意可知,在艺术小组9人中,有且仅有1人既会钢琴又会小号(把该人记为甲),只会钢琴的有6人,只会小号的有2人.把从中选出会钢琴与会小号各1人的方法分为两类.第1类,甲入选,另1人只需从其他8人中任选1人,故这类选法共8种;第2类,甲不入选,则会钢琴的只能从6个只会钢琴的人中选出,有6种不同的选法,会小号的也只能从只会小号的2人中选出,有2种不同的选法,所以这类选法共有6×2=12(种).因此共有8+12=20(种)不同的选法.

  • 大班社会《祖国在我心》说课稿

    大班社会《祖国在我心》说课稿

    我说课的题目是大班社会《祖国在我心》,热爱祖国教育一直以来是一个传统而又经典的教学内容,《幼儿园教育纲要》中指出:"幼儿的爱国主义教育应从情感教育和培养幼儿良好行为习惯为主,注重潜移默化的影响,并贯穿于幼儿生活与各项活动之中。" 因此,爱国主义教育始终是我教学的重点。研究表明,3~6岁的孩子正是个性倾向和道德观念形成的萌芽时期,是培养良好品德行为的黄金时代。我园现在使用的是南京师范大学出版社和台湾信宜基金出版社合作开发的《幼儿园活动整合课程指导》,由于教材来源于台湾,在小、中、大班的教材中都没有关于"热爱祖国"方面的主题内容。但这个关于民族灵魂的教育是作为每一个中国人都应该学习的,金秋十月,人们将迎来最为盛大、喜庆的节日--祖国母亲六十周岁生日。"十月一日是谁的生日?""中国到底有多大?""我们中国有什么?"……这些都是孩子们想了解的。

  • 道德与法治八年级上册维护国家利益2作业设计

    道德与法治八年级上册维护国家利益2作业设计

    2. 内容内在逻辑第八课《国家利益至上》设计了“国家好,大家才会好”“坚持国家利益至 上”两框内容,其立意在于帮助学生认识维护国家利益的重要性,正确认识国家 利益与人民利益的关系,提高维护国家利益的意识,树立正确的国家利益管,提 高辨析各种爱国观念和行为的能力,使自己的爱国情感更加理性、深沉。第九课《树立总体国家安全观》设计了“认识总体国家安全观”和“维护国 家安全”两框。 目的在于引导学生正确理解和全面把握我国安全形势面临的挑战 ,从小树立总体国家安全观, 自觉担负起维护国家安全的责任。第十课《建设美好祖国》设计了“关心国家发展”“天下兴亡,匹夫有责” 两框内容,其目的和意图在于帮助学生全面认识国家发展,从初中学生的角度认 识祖国发展,正视国家发展过程中的问题,理解自己与国家发展的密切关联,让 学生在关心祖国发展的同时,为将来投身于国家建设奠定认识基础。

  • 在全市深化放管服推进一件事一次办改革专题培训班上的讲话

    在全市深化放管服推进一件事一次办改革专题培训班上的讲话

    一是工作体系不断完善。去年,市县两级全面完成行政审批服务机构设立工作,市本级以及×个县市区成立了行政审批服务局,乡镇(街道)成立了政务服务中心、村(社区)成立便民服务中心,加之这几年“放管服”改革和“三集中三到位”改革深入,全市政务管理服务的组织领导体系、标准规范体系、平台体系更加完备,基本形成了市级统筹、部门协同、整体联动、线上线下融通的行政审批服务体系。

  • 精准扶贫调研报告范文关于精准扶贫的调研报告

    精准扶贫调研报告范文关于精准扶贫的调研报告

    一是村域经济基础薄弱。村内无集体企业,20**年集体经济收入不足5万元,债务化解难,造血功能差。  二是产业结构调整缓慢。由于地理位置偏远,山大人稀,交通不便,信息不畅,农民仍用传统方式耕作,自给自足,经济发展不成规模,产业结构调整比较缓慢。  三是基础设施建设滞后。道路交通条件差。供电网络老化,村内1/3的农户用电不达标。手机信号没有覆盖全村,只有少数农户安装宽带网,村民对外联系极不方便。全村80%农户居住土坯房,很大部分已成危房。

  • 最新关于全市公共卫生服务体系建设情况的调研报告

    最新关于全市公共卫生服务体系建设情况的调研报告

    (一)疾病预防控制工作成效明显。我市坚持以重大传染病防控、免疫规划、慢性病防治、精神卫生、突发公共卫生事件应急处置为重点,以提高全民健康水平为目标,攻坚克难,锐意进取,开拓创新,全市疾病预防控制和卫生应急工作取得了新成绩。免疫规划工作得到加强,儿童免疫规划一类疫苗免费接种;传染病、重大疾病防控、慢性病防治成效显著。  (二)精神卫生工作实现了新突破。我市启动了重性精神病患者网络管理系统,开展了重性精神病人普查活动,重性精神疾病患者规范化管理水平显著提高。定期举办“心理健康知识大讲堂”、“家长课堂”等免费讲座、开展义诊活动。同时与电视台、电台等新闻媒体合作形式多样的公益性栏目,普及心理、精神卫生健康知识,收到较好效果。

上一页123...358359360361362363364365366367368369下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。