教材分析:例4是让学生判断妈妈要买三种生活用品,带100元钱够不够。可以结合这种生活中经常出现的情景,使学生认识到,在日常生活中,有时需要进行精确计算,有时根据实际的需要只要估算出大致的结果就可以了,便于学生更完整、全面、深刻地认识数学的功能。估算的策略是多样化的,可以用连加,也可以用连减,还可以用加减混合,中间包含了加法的估算和减法的估算。教材上呈现了两种估算策略,有一名学生用连减的方法先估算出100-28大约得70,再估算出70-43大约得30,从而判断用剩下的钱买水杯还够,两步计算中都运用了估算。另一名学生先用加法估算出28+43大约得70,再口算出大约还剩30元,从而得出买水杯还够的结论,第一步计算运用了估算,第二步是精确计算。由于每个个体的思维方式和思维水平不同,所采取的估算策略也是不同的,教材上除了提供这两种估算策略以外,还有一名学生提出问题:“还可以怎样算呢?”提示教师在教学时让学生灵活采用适合自己的估算方法,体现了算法多样化的思想。
课程名称数学授课教师赵娜授课章节第四章第四节对数授课时间2015—2016年第一学期 第2周第1次课授课班级15级一班,15级二班,15级三班,15级四班,15级五班,15级六班,15级七班教学目的⑴ 理解对数的概念,理解常用对数和自然对数的概念; ⑵ 掌握利用计算器求对数值的方法; ⑶了解积、商、幂的对数.教学重点 和难点【教学重点】 指数式与对数式的关系. 【教学难点】 对数的概念.复习提问(1) 指数函数图像的性质本课小结⑴ 理解对数的概念,理解常用对数和自然对数的概念; ⑵ 掌握利用计算器求对数值的方法; ⑶了解积、商、幂的对数.布置作业练习册p7页1-4题检查签字 检查日期
【教学目标】1、掌握区间的概念;2、用区间表示相关的集合;3、通过数形结合的学习过程,培养学生的观察能力和数学思维能力。【教学重点】区间的概念【教学难点】 区间端点的取舍【教学设计】 1、实例引入知识,提升学生的求知欲;2、数形结合,提升认识;3、通过知识的巩固与练习,培养学生的思维能力【课时安排】 1课时(45分钟)【教学过程】² 创设情景 兴趣导入问题:资料显示:随着科学技术的发展,列车运行速度不断提高.运行时速达200公里以上的旅客列车称为新时速旅客列车.在北京与天津两个直辖市之间运行的,设计运行时速达350公里的京津城际列车呈现出超越世界的“中国速度”,使得新时速旅客列车的运行速度值界定在200公里/小时与350 公里/小时之间.如何表示列车的运行速度的范围??解决:不等式:200<v<350;集合:;数轴:位于200与3之间的一段不包括端点的线段;还有其他简便方法吗?
◆重要图释1、图2.4“洞庭湖及荆江地区飞机遥感影像”图此图为飞机遥感影像成像后利用地理信息系统在室内分析处理而成。飞机遥感时正值阴雨天气,虽然图面较暗,但地物仍然具有较高的分辨率。图中湖、河等水域为黑色。居民点的颜色为浅灰色,农田格局依稀可见。2、图2.5“洞庭湖及荆江地区卫星遥感影像”图此图为卫星遥感影像成像后利用地理信息系统在室内分析处理而成。图中深色的范围表示水体,城市呈灰白色。图中看不出农田的格局,说明卫星遥感对地物的分辨率没有飞机遥感高。【学习策略】由于3S技术涉及计算机技术、地球科学、信息科学、系统科学等多个领域,技术含量高、综合性强,对于高中生来说,比较难理解,所以,本节课在介绍有关技术时,可借助教材中的流程图和影像图片。教师应采用多媒体辅助教学手段,增强学生对“3S”技术的直观认识。
(1)我们比较铅笔的长度,可以说这支铅笔长些、那只铅笔短些;如果我们比较两名同学的身高,应该怎么说?(引导学生说出“高矮”)(板书:高矮)(2)(请两位身高相差较大的同学站起来)谁比较高?谁比较矮?(3)(请两位身高相差不大的同学站起来)能不能一眼看出来,谁比较高,谁比较矮?你有什么方法可以比较出他们两个谁比较高?(小组讨论)(4)小组汇报(5)现在我们来玩一个排队的游戏,四人小组按照从高到矮的顺序排队。(6)练习一 7、8、 4、小结:今天我们学了比较长短、比较高矮的方法。其实除了我们今天所说的方法之外,还有很多种方法,我希望同学们多动动脑筋,想出更多更好的方法。教学反思:在学习《长短、高矮》时,通过老师和学生、学生与学生比高矮,利用手边的铅笔、尺等来比长短,使学生理解长短、高矮是相比较而言的。这些事例是学生身边的,学生看的见、有体验、说的出来、易于理解的。因此,学生学起来容易,而且能够正确的加以运用。
教学目标:1、学生经历体验由具体数到用字母表示数的抽象过程;2、学生能用含有字母的式子表示计算公式;教学重、难点:目标1教学过程:一、引入。1、师:同学们,我们开始上课,先做一个游戏:首先,我说a表示举左手一次,我说b表示举右手一次,我说c表示拍手一次。听好了没有,现在老师说,你们做,好不好?师:abc,acb,bac,bca,cab,cba。师:刚才我们用字母表示一个信息,其实,在日常生活中,字母可以表示很多东西,今天,我们就一起来研究“用字母表示数”。(板书课题)2、复习数量关系式:(学生读一次)每份数×份数=总数 单价×数量=总价 速度×时间=路程总数÷份数=每份数 总价÷数量=单价 路程÷速度=时间总数÷每份数=份数 总价÷单价=数量 路程÷时间=速度评析:以学生感兴趣的游戏入手,激发学生的学习兴趣,同时复习数量关系式,为学习新知识奠定基础。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15
学生在观察和讨论后,由师生合作,归纳出中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)关于中心对称的两个图形是全等图形.让学生尝试自己证明△ABC与△A′B′C′全等,然后在教师的引导下相互交流。接着,对“轴对称”和“中心对称”的概念进行比较,我采用列表格的方式,从三个方面分别让学生去填,意图让学生把新学的知识及时纳入到已学的知识体系中去。4、灵活运用体会内涵1)首先讲授例1。(1)选择点O为对称中心,画出点A关于点O的对称点A′;(2)选择点O为对称中心,画出线段AB关于点O的对称线段A′B′.(3)已知四边形ABCD和O点,画出四边形ABCD关于O点的对称图形。在老师的引导下,共同完成作图,并规范画图方法:要画一个多边形关于已知点的对称图形,只要画出这个多边形的各个顶点关于已知点的对称点,再顺次连接各点即可。在本次活动中,意图利用中心对称的性质进行作图,加强对中心对称性质的理解。
2、测量。各个组的成员根据上面的设计方案在小组长的带领下到操场测量相关数据。比一比,哪组最先测量完并回到教室?(二)根据测量结果计算相关物体高度。时间为2分钟。要求:独立计算,并填写好实验报告上。(三)展示测量结果。时间为3分钟。各组都将自己计算的结果报告,看哪些同学计算准确些?(四)整理实验报告,上交作为作业。此活动主要是让学生通过动手实践,分工合作,近一步理解三角函数知识,以及从中体会学习数学的重要性,培养学生学习数学的兴趣和激情,增强团队意识。四、小结:本节课你有哪些收获?你的疑惑是什么?(2分钟)1、 知识上:2、 思想方法上:五、板书设计1、目标展示在小黑板上2、自主学习的问题展示在小黑板上3、学生设计的方案示意图在小组展示板上展示
二、教法分析为了让学生较好掌握本课内容,本节课主要采用观察法、讨论法等教学方法,通过创设情境,使学生由浅到深,由易到难分层次对本节课内容进行掌握。三、学法分析本课要求学生通过自主地观察、讨论、反思来参与学习,认识和理解数学知识,学会发现问题并尝试解决问题,在学习活动中进一步提升自己的能力。四、教学过程创设问题情景,引入新课活动内容:寻找不等的量 课本例一,例二设计目的:学生体会在现实生活中除了存在许多等量关系外,更多的是不等关系的存在,并通过感受生活中的大量不等关系,初步体会不等式是刻画量与量之间关系的重要数学模型。经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。课本例四,例五设计目的:培养学生数学抽象能力,提高把实际问题转化为数学问题的能力。六.课堂小结体会 常量与常量间的不等关系变量与常量间的不等关系变量与变量间的不等关系
设计意图:考虑学生的个别差异,分层次布置作业,让基础差的学生能够吃饱,基础好的学生吃好,使每位学生都感到学有所获。五、评价分析数学课程标准指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,而动手实践、自主探究与合作交流是学生学习数学的重要方式。本着这一理念,在本课的教学过程中,我严格遵循由感性到理性,将数学知识始终与现实生活中学生熟悉的实际问题相结合,不断提高他们应用数学方法分析问题、解决问题的能力。在重视课本基础知识的基础上,适当进行拓展延伸,培养学生的创新意识,同时根据新课程标准的评价理念,在教学过程中,不仅注重学生的参与意识,而且注重学生对待学习的态度是否积极。课堂中也尽量给学生更多的空间、更多展示自我的机会,让学生在和谐的氛围中认识自我、找到自信、体验成功的乐趣。使学生的主体地位得到充分的体现,使教学过程成为一个在发现在创造的认知过程。
6、袋子里有8个红球,m个白球,3个黑球,每个球除颜色外都相同,从中任意摸出一个球,若摸到红球的可能性最大,则m的值不可能是( )A.1 B.3 C. 5 D.10活动目的:拓宽学生的思路,对本节知识进行查缺补漏,并进一步的巩固加深,鼓励学生大胆猜测,培养学生勤于动脑、勇于探究的精神. 注意事项:对于第4题与第5题可适当的说出事件发生的可能性的大小,即概率的大小,为今后学习概率做铺垫;对于第6题可根据回答情况讲解.七、学习小结:师生共同回顾新知探究的整个过程,互相交流总结本节的知识点:(1)理解确定事件与不确定事件;(2)知道不确定事件发生的可能性有大有小;(3)合理运用所学知识分析解决相关问题.目的:锻炼学生的口头表达能力,体会学习的成果,感受成功的喜悦,增强学好数学的信心.(学生畅所欲言,教师给予鼓励)
4.已知一个三角形的两边长分别是4cm、7cm,则这个三角形的周长的取值范围是什么?目的:主要是让学生掌握三角形三边的和差关系具体的应用,并能应用生活中实际问题。同学之间可以合作交流互相探讨,发展学生空间观念、推理能力,使学生善于观察生活、乐于探索研究,激发学生学习数学的积极性,从中适当的对学生进行德育教育,教育学生穿越马路时间越长就越危险。(五)课堂小结学生自我谈收获体会,说说学完本节课的困惑。教师做最终总结并指出注意事项。目的:让学生畅所欲言,谈收获体会,教师给予鼓励。主要是让学生熟记新知能应用新知解决问题,培养学生概括总结的能力、有条理的表达能力。注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可。当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边。
此题的设计目的:及时的练习一是起到巩固新知识的目的,二是及时了解学生掌握新知识的情况,起到反馈的目的。这样设计的依据是:小题多,是让更多的学生参与到学习中来,及时给予他们更正,更多的是对他们的鼓励和表扬,有简单的题尽量让基础不太好的的学生去说,以让他们感受到成功的乐趣;并且《新课标》中指出课程内容应处于学生“最近发展区”的范围以内,让成功始终伴随学生学习的旅程,以保证学生不会因过多的失败而放弃他们的努力,失去发展的机会。第四环节:师生合作,归纳总结。先由学生个人总结,然后教师补充。设计目的:通过学生个人小结,教师可以了解学生掌握知识的情况,培养学生总结概括的能力,教师补充起到完善所学知识的目的。第五环节:布置作业,巩固提高。设计目的:因材施“作业”,分层次布置作业,减轻学生的负担,全面推行素质教育,让学生学有用的数学,不同的学生学习不同的数学,在数学中得到不同的发展,以求彰显学生的个性。
一、说教材:等腰三角形是北师大版初中八年级下册数学教材第一章第一节的教学内容,本节是轴对称图形的应用,是研究等腰三角形的开篇。通过本章节的学习,可以丰富和加深学生对已学图形的认识,为以后的图形学习和证明打好基础。本节在编排上考虑学生的认知规律,从学生容易接受的动手操作找规律开始到几何画板的验证再过渡到几何证明与应用。根据课程标准,确定本节课的目标为:【教学目标】1.知识与能力 理解并掌握等腰三角形的定义,探索等腰三角形的性质;能够用等腰三角形的知识解决相应的数学问题.2.过程与方法通过动手操作、动态演示等方法,培养学生思考探究数学的能力;通过例题与练习,提高学生添加辅助线解决问题的能力。3.情感、态度与价值观 在探索等腰三角形性质的过程中体会轴对称图形的美,感受数学与生活的联系;在例题教学中,感受数学之美;培养学生分析解决问题的能力,使学生养成良好的学习习惯.
1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。2.了解一元一次不等式组及解集的概念。3.会利用数轴解较简单的一元一次不等式组。4.培养学生分析、解决实际问题的能力。5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。能在解决问题过程中勤于思考、乐于探究,体验解决问题策略的多样性,体验数学的价值。四、教学重、难点分析教学重点:1.理解有关不等式组的概念.2.会解由两个一元一次不等式组成的不等式组.教学难点:在数轴上确定解集.五、教学手段分析本节课采用多媒体教学,利用多媒体教学信息容量大、操作简单、形象生动、反馈及时等优点,直观地展示教学内容,这样不但可以提高学习效率和质量,而且容易激发学生学习的兴趣,调动积极性。
回顾整节课的设计,我主要着力于以下三个方面:1.关于教材处理:认真处理教材,目的只有一个——为我的学生尽可能多地提供参与活动的机会,在本节课中主要体现在以下几点:(1)通过“合成代数式”、“赋予分式实际意义”两个活动,激发兴趣,吸引学生参与活动;(2)通过“互举例子”、“填表探究”两个活动,鼓励学生主动参与活动;(3)通过“应用新知”这个环节,促进学生参与活动。2.关于教与学方法的选择:我在设计中始终关注:如何精心组织活动,让学生在丰富的活动中探索、交流与创新,因此我选择了“引导——发现教学法”,具体做法如下: (1)用数、式通性的思想,类比分数,引导学生独立思考、小组协作,完成对分式概念及意义的自主建构,突出数学合情推理能力的养成;(2)加强应用性,通过“应用新知”、“深化拓展”两个环节,密切分式与现实生活及其他学科的联系,发展数学应用意识,突出分式的模型思想。
设计目的:通过学生的反馈练习,使教师能全面了解学生对公因式概念的理解是否到位,提取公因式的方法与步骤是否掌握,以便教师能及时地进行查缺补漏.但依然有部分同学会出现问题,如对首项出现负号时不能正确处理,此时,需要老师进一步引导.第四环节 课堂小结从今天的课程中,你学到了哪些知识?你认为提公因式法与单项式乘多项式有什么关系?怎样用提公因式法分解因式?设计目的:通过学生的回顾与反思,强化学生对确定公因式的方法及提公因式法的步骤的理解,进一步清楚地了解提公因式法与单项式乘多项式的互逆关系,加深对类比的数学思想的理解。第五环节 当堂检测把下列各式分解因式(1)2x2-4x (2)8m2n+2mn(3)-4a3b3+6a2b-2ab (4)2n2-mn-n*(5)3an+1-2anc-7an+2设计目的:检验学生的目标达成情况,其中第五小题供学有余力的学生选作。第六环节 课后反思教学反思
情景感知概括运用设疑诱导动手操作合作交流尝试活动启发引导类比发现演练结合观察分析自主探索问题讨论利用尝试活动“我来当老师!”给学生提供设计问题的机会,培养他们实事求是的科学态度,勇于质疑、敢于创新的良好习惯及数学应用能力。例1、根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么?通过罗列一些似是而非、容易产生错误的对象让学生辨析,促使他们认识概念的本质、确定概念的外延,从而形成良好的认知结构。例2:解答下列问题:(1)993-99能被99整除吗?能被98整除吗?能被100整除吗?(2)求代数式IR1+IR2+IR3的值,其中R1=19.2,R2=35.4,R3=32.4,I=2.5。让学生进一步体会用分解因式解决相关问题的简捷性。例3、填空:若x2+mx-n能分解成(x-2)(x-5),则m=,n=。
④联系生活实际解决身边的问题,让同学初步感受数学与日常生活的密切联系,体验数学的应用,促进学生的发展。接下来,我再具体谈一谈这堂课的教学过程。3、说教学过程第一环节:创设情境,激qing导入。同学们你们看屏幕上的是什么?(出示图片)那么自行车车轮是什么形状的?为什么车轮要设计成圆形?这里面有什么奥妙呢?学了今天的内容大家就会明白的。这节课我们就走进圆的世界去探寻其中的奥妙。板书课题:圆的认识设计意图:通过生活中实际例子引入课题,一方面引起学生的学习兴趣,另一方面为学习新知识做了铺垫,从思想上吸引了学生主动参与学习的活动。这一环节的设计,主要是想体现数学就在我们的身边,从而激发学生学习的兴趣及学习的积极性。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。