一、说教材 《三黑和土地》是统编教材小学语文六年级上册第六单元的一篇略读课文。这是一首现代诗歌,描述了翻身农民三黑重获土地的喜悦心情,对土地的无比热爱之情,以及有了土地后对美好生活的憧憬和向往。 本文分为三个部分:第一部分总体写出三黑得到土地后,视若珍宝、爱不释手的情感。认真地侍弄土地:仔细地翻地,来回地耙地,把土地弄得非常松散,简直像一张柔软的床。非常适合种子在上面生长。第二部分介绍三黑把荞麦种子播种到地里,看到麦苗的良好长势,听到地里的蝈蝈叫,想起心酸的童年生活,第三部分,展望未来,向往美好的生活。 二、说教学目标 1.训练学生正确理解和运用语言文字的能力。 2.掌握作者比喻的修辞手法。 3.了解三黑对土地的热爱和对美好生活的向往之情。
3.明白最后一句话的含义,明白人一定要珍惜时间,积极争取知识、能力、经验的增长,不能错过时机,否则就会成为一事无成的人。 三、说教学重难点1.通过阅读,理解为什么说“夏天是万物迅速生长的季节。” 2.了解作者写作的顺序,学习“围绕中心句展开描写”的方法。 3.体会作者的表达特点,明白最后一句话的含义。四、说教法学法 本课的教学我采用了创设情境法、朗读感悟法、自主感悟合作交流法。首先从课文的题目入手,抓住题眼“成长”思考:课文描写了夏天哪些事物的成长?这些事物的成长有什么特点?然后带着问题阅读课文,并找出课文的中心句。再自读课文,找出文中描写万物成长的句子,读一读,体会万物在夏天成长的特点,学习围绕中心句展开具体描写的写作方法。最后联系课文理解最后一句话的含义,从中受到启示。
四、说教法学法这篇课文浅显易懂、生动有趣,在教学中应以读为本,应让学生在主动积极的思维和情感活动中,加深理解和体验,有所感悟和思考,受到情感熏陶,获得思想启迪,享受审美乐趣。因此,在教学中,引导学生入境、想象、美读、感悟,引导学生在读中感悟,在读中激情,在读中体验、品味,让学生真正走进大自然,体验大自然,发现大自然,激发学生热爱大自然的感情。 1.创设情境,走进文本:在教学中,要让学生自己阅读、自己学会阅读。教学中我创设了情境,让大自然带领学生聆听了一场特殊的音乐会,缩短了学生与文本的空间距离,让学生置身于自然之中,俨然是大自然中的一员,在情境中感知,体会到大自然声音的美妙,与文本产生了共鸣,激发了学生的学习兴趣,让学生成为学习的主人。 2.美读感悟,放飞想象:在教学中始终以“大自然中这些声音真是太美妙了”贯串始终,重点指导学生美读课文,抓住描写声音的词,边读边思考,大胆的展开想象,有感情地读,配乐读,自由读,分组读,师生合读,全班齐读,在读中生成自己独特的感受、体验和理解,感受风声的美妙,水声的有趣,动物声的快乐,同时培养学生的语感。 3.拓展延伸,提高能力:布置学生课后在大自然找一些新发现,拓展学生的学习空间,扩大视野,增长知识。让学生在课内外的学习中提高语文素养。
二、说目标根据以上我对教材的认识和分析,结合本阶段识字阅读的重点,针对二年级学生的年龄特征,我把本课的教学目标确定为:1、知识目标:认识“酪、捡”等12个生字,会写“奶、始”等8个字。2、语感目标:正确流利有感情地朗读课文,会分角色读课文。3、能力目标:读懂故事内容,能对狐狸的说法作出判断,初步表达自己的想法。三、重难点在确定教学目标后,我把本科划分为两个课时,本次说课的内容为第二课时,其教学重点是理解课文内容、分角色读课文,对狐狸的说法作出判断,初步表达自己的想法。四、说教法、学法。先学后教、以学定教、会的不教。上课前一天下发本课前置小研究,课前检查学生的预习情况,当堂解决孩子们困惑的地方,或者我认为学生需要了解并掌握的知识进行巩固教学,课堂上的教学方法,以小组合作,展示交流为主。
【说教材】《我是什么》是部编版二年级上册第一单元中的一课。本文是一篇拟人的科学短文,以朴实生动的语言,结合谜语的形式,图文并茂地向学生展示了水的变化及其利与害。全文共五段,重点内容可分为三个部分:水的变化、水的形态、水给人类带来的利弊。第二课时的教学重点是在理解课文的基础上,有感情地朗读课文。【说教法】这是一篇集科学性与趣味性于一体的科学小短文。所以在教学中要注意激发学生兴趣,引导其有感情地朗读课文并了解相关科学常识。本节课我主要采用了以下的四种教法:1.体验教学法。通过让学生演示,发挥学生各种感官功能,让学生在动脑、动口、动手中参与训练,激活思维,读懂课文的词句。2.多媒体辅助教学法。这节课,我制作了课件,视听结合,诱发学生的情感,让他们兴趣盎然地参与教学活动。3.鼓励欣赏法。通过点评鼓励学生充分地展示才能,满足他们希望得到赞许、羡慕,体会成功的心理特点,激起学生学习的欲望,增强学习的信心。
二、说学情?? 二年级的学生好动,许多行为习惯还正在培养,他们年龄小,好动、易兴奋、易疲劳,注意力容易分散,尤其是刚开学时。但是他们活泼好动天真烂漫,大多数人思维活跃,学习的兴趣较浓,但是他们也存在着一定的差异。而且本班学生不善于举手发言,一小部分学生会也不举手。课堂气氛欠活跃。三、说教学目标1.认识“莺、拂”等11个生字;会写“诗、村”等8个字。2.图文结合,初步了解诗句的意思。3.正确、流利的朗读古诗,背诵古诗。四、说教学重难点1.识字、写字。(重点)2.图文结合,初步了解诗句的意思和入情入境,有感情的朗读古诗。(重点)3.在朗读中感受春天的美好和乐趣,培养学生热爱春天和热爱大自然的情感(难点)
一、说教材《古诗二首》是统编版语文小学二年级下册第六单元的第一篇课文。《晓出净慈寺送林子方》是一首送别诗,作者抓住了那满湖的荷花荷叶作为写作对象,前两句议论,后两句写景,抒发了诗人对西湖美景的赞叹热爱之情。整首诗口语成诗,景色醉人,韵味十足。特别是:“接天莲叶无穷碧,映日荷花别样红”句,意境广阔,给人无尽的喜悦和想象。二、说学情因为学生在课外阅读和积累中已经背诵过大量的古诗,课文中出现的古诗学生早就能背诵了,对描写荷花的这句诗应该比较熟悉了,他们能够也有了一定的学习力了,能够把诗句的意思大概地连起来表述。三、说教学目标1.会认“晓、慈”等12个生字,读准多音字“行”,会写“湖、莲”等8个生字。 2.学习有节奏、有感情地诵读古诗《晓出净慈寺送林子方》,背诵古诗。3.结合画面,理解诗句的意思,品味重点词语的表达效果。4.理解诗歌内容,想象诗歌呈现的画面,体会诗人热爱大自然的情感。5.初步掌握学习古诗的基本方法。
一、说教材《赠刘景文》这首古诗的作者是苏轼。这首古诗是写秋末的景色,第一句以荷败、菊残,写出了秋末的特征。接下来诗人以橙子的金黄与橘子的青绿,把深秋的景色点缀得色彩鲜明而富有生气。诗人在此一反悲秋的调子,突出了秋天是收获的季节。第二行诗赞颂了菊花的残枝有傲霜凌寒的气概。二、说教学目标1.学会本课生字,重点理解诗句中“擎、残、犹”的意思。了解诗句的含义。2.能正确、流利、有感情地朗读古诗和背诵古诗。3.通过对诗句的诵读感悟,培养学生丰富的想象力和语言表达能力。体会诗中描绘的浓浓秋色,感受诗歌美的意境和深刻的哲理。4.通过学习课文,唤起学生面对生活要乐观向上,不泄气,珍惜现在的大好时光。三、教学重、难点1.通过“欣赏意境”的训练和利用画面再现,从词义理解到理解全句、全篇,来帮助学生领悟、感受全文。(重点)2.通过对诗句的诵读感悟,培养学生丰富的想象力和语言表达能力。体会诗中描绘的浓浓秋色,感受诗歌美的意境和深刻的哲理。(难点)
一、说教材《画杨桃》是统编语文小学二年级下册第五单元的一篇精读课文。本组教材有一个共同特点:都是用具体的事情来说明一个道理。所说明的道理,分别从不同的角度丰富了学生的思想方法。《画杨桃》作为一篇精读课文,说的是图画课上,老师让我们画杨桃,“我”根据自己看到的,把杨桃画成像个五角星的样子,受到同学们取笑。老师通过这件事,既启发我们知道同一个从事物从不同角度看会有不同结果,又教育我们要实事求是地看待问题,使我受到了很大的启发。老师通过这件事,既启发我们知道同一个事物从不同角度看有不同结果,从中受到科学思想方法的教育;同时又教育我们要尊重他人的多元理解,要设身处地地去看待事物。二、说教学目标1.会认“靠、而”等14个生字,会写“图、课”等9个生字。 2.正确、流利、有感情地朗读课文,注意对话的语气。在具体的语言文字中进一步体会情感,品味美感。3.学习抓住重点词句,理解课文内容,知道同一个事物从不同的角度看会有不同的样子,懂得无论做什么事或看问题,都应该实事求是。
四、说教法学法 【教法】阅读教学的核心是读,因此本课教学主要采取读式教学法。谈话导入——讲究激励性;初读寻疑——提倡自主性;再读释疑——倡导探究性;细读解析——主张创造性;美读品味——提倡鉴赏性;熟读成诵——主张积累性;读写结合——激发想象性,意在拓展学生思维,培养学生创新精神。 本课的教学过程力求体现以学生为主,运用以读代讲的教学方法使学生在正确朗读的基础上对文言文有个初步的认识;在流利朗读的基础上,能够理解古文的意思;在感情朗读的基础上,感悟语言的艺术魅力,体会古文的韵味。运用启发引导的教学方法,培养学生掌握学习古文的方法。 【学法】学习文言文的基本方法是读,学习文言文的最好方法还是读,因此学习本课的主要方法是朗读。让学生经历初读—再读—细读—美读—熟读—诵读的过程,在此过程中引导学生读思议相结合,让学生经历寻疑—释疑—解析—入情—品味—成诵—读写的过程,体现学生从提出问题到探究问题,解决问题的过程。
一、说教材1.教材的地位和作用:《牛郎织女》是我国四大民间故事之一,带有神话色彩。本文语言朴素、简洁、清新自然,读来琅琅上口。从表达方式看,这篇课文与其他几篇都以记叙为主;在学习方法上与前一课没有割裂,可以继续学习记叙文的方法。2.教学目标:本文是民间故事,所以将目标定位在掌握情节的基础上,把握人物形象,从而在训练口头表达能力的同时使学生体会文章主旨,具体目标如下:知识与能力:了解有关民间故事的知识及产生的历史背景;积累词语;掌握主要情节,把握人物形象;培养想象能力和口头表达能力。过程与方法:自主解决生字词;感受人物形象;情境表达。情感态度与价值观:体会以牛郎为代表的古代劳动人民对幸福生活的追求和向往;培养学生善良的品性和对恶势力憎恶的感情。3.教学重难点:人物和情节是故事的主要组成部分,故事总是用来讲的,因此确定教学重点为:掌握主要情节,把握人物形象;情境表达。
一、说教材《示儿》是南宋著名爱国诗人陆游的绝笔。当时的南宋金兵不断入侵、宋军节节败退,国家山河破碎,不复统一。陆游悲愤交加,临终前立下遗嘱,既有对壮志未酬身先死的悲愤,更有对祖国山河统一必成的坚定信念。二、说教学目标根据新课程标准对本学段学生的要求,我从三个维度设定了以下教学目标1.知识与技能:自学生字,理解“元、同”等词语的意思。2.过程与方法:借助注释,理解诗意;反复诵读,领悟意境。3.情感态度与价值观:引导学生与作者情感产生共鸣,激发学生的爱国主义情怀。三、说教学重难点诗歌的意境作为本节课的重难点。四、说教法和学法我主要采用朗读指导法、谈话法等,借助多媒体课件展示,创设情境,领悟诗歌意境。在学法上,采用读、想、说、写相结合的方法,让学生明诗意、悟诗情。
一、说教材《京剧趣谈》是统编教材小学语文六年级上册第七单元的一篇略读课文。第七单元以让学生体会艺术之美为主题编排课文,而本课就向学生介绍了我国京剧艺术中“马鞭”和“亮相”这两种艺术表现形式。作者徐北城用通俗幽默的语言将这些奥秘娓娓道来,不仅介绍了关于京剧的知识,也流露了作者对于京剧的喜爱和对传统文化的自豪感。这篇课文也让学生更好地了解我国京剧艺术的独特魅力。二、说教学目标 1.能正确、流利、有感情地朗读课文。 2.能借助文中的描述展开想象,体会京剧的魅力。 3.能了解课文中介绍的关于京剧的常识及艺术特色,接受京剧文化的熏陶。三、说教学重难点1.能借助文中的描述展开想象,体会京剧的魅力。2.能了解课文中介绍的关于京剧的常识及艺术特色,接受京剧文化的熏陶。
一、教材分析课文基本内容:本组课文以“爱国主义教育”为主题,内容展现的是在中国近代史上,中华民族受尽屈辱,优秀的英雄儿女们奋起抗争的革命斗争故事,饱含了强烈的民族精神和爱国热情。教师通过课文内容的讲解和激昂的朗读带领学生进入曾经的战争年代,体会战士们的爱国热情和他们视死如归的英雄气概,通过课文的学习激发学生强烈的爱国情怀,深化文章的主题。二、教法和学法采用讲授法、讨论法、读书指导法和演示法相结合的教学方法,引导学生通过自主学习课文和同学谈论交流等方式发现问题、提出问题、解决问题,学生在学习的过程中要加强朗读,做到“以读促情、以读感悟”。另外,教师配合运用多媒体课件展示和板书等方法来促进课堂教学。
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。