[活动准备] 纸飞机、竹蜻蜓、积木、彩纸、手工纸、蜡笔、作业纸、沙包 [活动过程] 一、引导幼儿发现物体在空中会自由下落1、幼儿自由玩竹蜻蜓和纸飞机,提出问题:竹蜻蜓和飞机开始在哪里飞行?最后又落在哪里?2、讨论:它们飞到天上,为什么会落下来?3、知识点:地球有引力,所以物体会落下来。4、所有的物体都会下落吗?
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的正弦公式与余弦公式. *创设情境 兴趣导入 问题 两角和的余弦公式内容是什么? 两角和的余弦公式内容是什么? 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 5*动脑思考 探索新知 由同角三角函数关系,知 , 当时,得到 (1.5) 利用诱导公式可以得到 (1.6) 注意 在两角和与差的正切公式中,的取值应使式子的左右两端都有意义. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 15*巩固知识 典型例题 例7求的值, 分析 可以将75°角看作30°角与45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)题可以逆用公式(1.3);(2)题可以利用进行转换. 解(1) ; (2) . 【小提示】 例4(2)中,将1写成,从而使得三角式可以应用公式.要注意应用这种变形方法来解决问题. 引领 讲解 说明 引领 分析 说明 启发 引导 启发 分析 观察 思考 主动 求解 观察 思考 理解 口答 注意 观察 学生 是否 理解 知识 点 学生 自我 发现 归纳 25
1、走:第一周:向指定方向走,拖(持)物走;第二周:在指定范围内散走;第三周:一个跟着一个走,延圆圈走,模仿动物走;2、跑:第四周:向指定方向跑、持物跑;第五周:延规定线路跑;第六周:在指定范围内散跑;第七周:在指定范围内追逐跑;第八周:听口令走跑交替;3、跳:第九周:双脚向前跳;第十周:双脚向上跳(头触物离头10—12cm);第十一周:从20—25cm高处往下跳;第十二周:避开中间直线(左右)跳;
一、每天学校上班时间,全体教职员工均应坚持坐班工作制。具体为工作日上午一至三节,下午五至八节。教职工必须严格遵守坐班时间。 二、每天坐班情况由各年级值班人员记录,当天值班人员在每节课上课铃响后十分钟内进行记录,以每节课在办公室办公半小时以上认定为坐班,值班人员必须认真负责,不循私情,确保公平公正。 三、全体教职员工不得随意更改坐班记录情况,有特殊情况的,须即时向值班人员解释清楚,如果记录确实有误,可由值班人员更改记录。
尊敬的各位评委老师:大家好!我叫xxx,是xxxxx小学的一名中队辅导员。今天我说的少先队活动课的主题是:《从小牢记价值观 做诚实守信少年》。下面我将从活动背景、设计理念、活动目标、活动准备、活动过程等几个方面作具体的阐述。 一、说活动背景: 少年是祖国的未来,民族的希望。价值观则是人们关于生活中基本价值的信念、信仰、理想等思想观念的总和。在青少年的价值观形成时期,帮助、指导他们树立正确的价值观,具有十分重要的历史意义。 二、说设计理念: 我国思想文化建设的重要目标之一是树立正确的世界观、人生观和价值观。学生在价值追求上抱有怎样的信念、信仰、理想,便构成了价值观特有的思想内容。价值观对学生的行为有着深层的导向作用。在现实生活中,我们总是尽可能地按照自己的价值观去生活、处世。这就迫切需要使学生们对价值观的正确性有更深更正确的了解! 三、说活动目标: 1、通过此次活动把社会主义核心价值观融化在学生心里,铭刻在脑海中,明白价值观的重要性,从而种下社会主义核心价值观的种子。 2、从实际生活入手,懂得要从自己做起、身边做起,争做诚实守信的好少年,并用实际行动践行社会主义核心价值观。 四、说活动准备: 辅导员准备:(1).课件准备(2).选定主持人 、演员进行训练 (3).准备队旗等教具。 (4)收集社会主义核心价值体系内涵外延的材料等 学生准备:(1)搜集身边关于诚实守信的故事或行为 (2)初步了解什么是社会主义核心价值观,
〖设计意图:使学生更深刻更正确地领悟价值观的重要作用,初步树立了正确的价值观,并下决心在价值观的引导下要做一位“诚实守信”的好少年。〗第四环节:快乐品味价值1. PPT分三个层面出示24字核心价值观,请全班同学集体朗诵,并尝试用自己的.话理解24个字的内涵。2.庄严宣誓中队长小结发言后一同面向队旗面向五星红旗庄严宣誓: 接着诵读梁启超先生的《少年中国说》〖通过这一环节让学生进一步巩固核心价值观并达到背诵的目的。让24个字融化在心间,铭刻在脑海里。〗以上四个环节由浅入深, 层层递进,充分调动了学生的多种感官参与活动,促进了学生身心和能力的发展,顺理成章的达到了本次活动的目的。以上就是我对《从小牢记价值观,做诚实守信少年》这节少先队活动课的阐述。存在的不足之处还恳请各位评委老师批评指正。谢谢!
一、教学目标(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.(三)学科渗透点通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.二、教材分析1.重点:抛物线的定义和标准方程.2.难点:抛物线的标准方程的推导.三、活动设计提问、回顾、实验、讲解、板演、归纳表格.四、教学过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.首先,利用篮球和排球的运动轨迹给出抛物线的实际意义,再利用太阳灶和抛物线型的桥说明抛物线的实际用途。
教学目的:理解并熟练掌握正态分布的密度函数、分布函数、数字特征及线性性质。教学重点:正态分布的密度函数和分布函数。教学难点:正态分布密度曲线的特征及正态分布的线性性质。教学学时:2学时教学过程:第四章 正态分布§4.1 正态分布的概率密度与分布函数在讨论正态分布之前,我们先计算积分。首先计算。因为(利用极坐标计算)所以。记,则利用定积分的换元法有因为,所以它可以作为某个连续随机变量的概率密度函数。定义 如果连续随机变量的概率密度为则称随机变量服从正态分布,记作,其中是正态分布的参数。正态分布也称为高斯(Gauss)分布。
教学准备 1. 教学目标 知识与技能掌握双曲线的定义,掌握双曲线的四种标准方程形式及其对应的焦点、准线.过程与方法掌握对双曲线标准方程的推导,进一步理解求曲线方程的方法——坐标法.通过本节课的学习,提高学生观察、类比、分析和概括的能力.情感、态度与价值观通过本节的学习,体验研究解析几何的基本思想,感受圆锥曲线在刻画现实和解决实际问题中的作用,进一步体会数形结合的思想.2. 教学重点/难点 教学重点双曲线的定义及焦点及双曲线标准方程.教学难点在推导双曲线标准方程的过程中,如何选择适当的坐标系. 3. 教学用具 多媒体4. 标签
4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
一、 预算编制的原则 1、量入为出、收支平衡、留有余地的原则。要广开财源,堵塞漏洞,积极筹措办学经费。要根据事业发展需要和财力可能,实行预算内外资金统筹安排,综合平衡,不编制赤字预算。 2、保证重点的原则。集中资金保证学校当年确定的重点项目开支,保证教学、科研和教师队伍建设经费逐年增长。 3、 定员定额预算的原则。在充分调查研究的基础上,根据学校实际,对以学生人数和教工人数确定经费包干使用的预算项目,事先核定定额标准,再按标准预算。
(二)完善基础设施,建设优美宜居村镇。积极争取资金投入,尽快建设实施连心桥及周边附属设施;力争在年底前完成XX镇综合服务运输站建设。继续保持专班不散,积极配合镇广高速的后续建设,全力做好纠纷协调、矛盾化解,确保镇广高速建设平安有序。持续抓好农村公路升级改造,多方筹措资金,尽快完成因汛期降雨、滑坡、沉降损毁的37处700米道路修复。灵活利用91个公益性岗位,进一步加大村级公路及重点路段的道路养护工作力度,推进镇村道路绿化、美化、亮化工作。(三)加强生态治理,践行绿色生态理念。牢固树立和践行“绿水青山就是金山银山”的理念,强化镇、村环境卫生检查督办和考核力度。强力推进大气污染防治,强化建筑扬尘和渣土运输管控,抓好秸秆禁烧、水环境治理等工作,持续改善和提升空气质量。认真落实耕地保护和环境保护制度。落实控绿、造绿、植绿、护绿行动,统筹推进乡村绿化美化、退耕还林等工程建设,实现全镇宜林地、通道绿化地、村庄绿化地等应绿尽绿,积极申报巴中市级生态文明村,力争创成生态乡镇。
保障学生的生命安全和健康成长,是教育工作的首要职责,学校安全工作,责任重于泰山。我们必须始终坚持“教学质量与安全工作两手抓,两手都要硬”的办学方针,牢固树立“珍惜生命,安全第一”的意识,坚持以人为本,把加强安全教育管理工作,摆到突出的位置。进一步贯彻“安全第一、预防为主,以人为本,长抓不懈”工作方针,构建完善的安全工作体系,强化安全管理,狠抓各项安全措施的落实,切实保障广大师生的安全和校园环境安定,积极防范各类安全事故的发生。
能够担任我们学院的重点团队之一的主要负责人,这让我感到十分任重而道远,毕竟是第一次带领团队参加三下乡实践活动。团队组织得是否得当,工作分配是否合理,还有住食问题、安全问题等都是我们队长要考虑的。因为怕自己无法胜任这个职位,自信心起初当然会受到一定的打击。为了能够让这次的活动做到尽善尽美,在出发前,我对所有的队员做了思想工作必须特别能吃苦,特别能贡献,在服务大众的同时,培养自身的社会实践能力。并且让各个队员做好准备工作和工作展望。准备工作如期进行,大家都有了大概的工作理念。自然地,充分的工作准备,不仅给予了我极大的自信心,而且还使工作顺利地展开。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。