目的:课后作业设计包括了两个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;拓广知识,增加学生对数学问题本质的思考而设计,通过此题可让学生进一步运用三元一次方程组解决问题.教学设计反思1.本节课的内容属于选修学习的内容,主要突出对数学兴趣浓厚、学有余力的同学进一步探究和拓展使用,在数学方法和思想方面需重点引导,通过引导,使学生明白解多元方程组的一般方法和思想,理解巩固环节需多注意多种解题方法的引导,并且比较各种解题方法之间的优劣,总结出解多元方程的基本方法.2.作为选修课,在内容上要让学生理解三元一次方程组概念的同时,要让学生理解为什么要用三元一次方程组甚至多元方程组去求解实际问题的必要性,从而掌握本堂课的基础知识.在教学的过程中,要让学生充分理解对复杂的实际问题方程中元越多,等量关系的建立就越直接;充分理解代入消元法和加减法解方程的优点和缺点,有关这一方面的题目要让学生充分讨论、交流、合作,其理解才会深刻.
意图:(1)介绍与勾股定理有关的历史,激发学生的爱国热情;(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第六环节: 回顾反思 提炼升华内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.
解析:图中∠AOB、∠COD均与∠BOC互余,根据角的和、差关系,可求得∠AOB与∠COD的度数.通过计算发现∠AOB=∠COD,于是可以归纳∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可发现:∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法总结:检验数学结论具体经历的过程是:观察、度量、实验→猜想归纳→结论→推理→正确结论.三、板书设计为什么,要证明)推理的意义:数学结论必须经过严格的论证检验数学结论的常用方法实验验证举出反例推理证明经历观察、验证、归纳等过程,使学生对由这些方法得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识,了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.
探究点二:勾股定理的简单运用如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,A1B1=8km.现要在高速公路上A1、B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离和.解析:运用“两点之间线段最短”先确定出P点在A1B1上的位置,再利用勾股定理求出AP+BP的长.解:作点B关于MN的对称点B′,连接AB′,交A1B1于P点,连BP.则AP+BP=AP+PB′=AB′,易知P点即为到点A,B距离之和最短的点.过点A作AE⊥BB′于点E,则AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B两村庄的最短距离和是10km.方法总结:解这类题的关键在于运用几何知识正确找到符合条件的P点的位置,会构造Rt△AB′E.三、板书设计勾股定理验证拼图法面积法简单应用通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,学会勾股定理的应用并逐步培养学生应用数学解决实际问题的能力,为后面的学习打下基础.
煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x的关系式;(2)写出y与x的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为总利润y=甲产品的利润+乙产品的利润.解:(1)因为4m+10x=300,所以m=150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y=600x+1000m.将m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.
第三环节:课堂小结活动内容:1. 通过前面几个题,你对列方程组解决实际问题的方法和步骤掌握的怎样?2. 这里面应该注意的是什么?关键是什么?3. 通过今天的学习,你能不能解决求两个量的问题?(可以用二元一次方程组解决的。4. 列二元一次方程组解决实际问题的主要步骤是什么?说明:通过以上四个问题,学生基本上掌握了列二元一次方程组解决实际问题的方法和步骤,可启发学生说出自己的心得体会及疑问.活动意图:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.说明:还可以建议有条件的学生去读一读《孙子算经》,可以在网上查,找出自己喜欢的问题,互相出题;同位的同学还可互相编题考察对方;还可以设置"我为老师出难题"活动,每人编一道题,给老师,老师再提出:"谁来帮我解难题",以此激发学生的学习兴趣和信心。
方法总结:利用三角形三边的数量关系来判定直角三角形,从而推出两线的垂直关系.探究点二:勾股数下列几组数中是勾股数的是________(填序号).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①组不符合勾股数的定义,不是勾股数;第③④组不是正整数,不是勾股数;只有第②组的9,40,41是勾股数.故填②.方法总结:判断勾股数的方法:必须满足两个条件:一要符合等式a2+b2=c2;二要都是正整数.三、板书设计勾股定理的逆定理: 如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.勾股数:满足a2+b2=c2的三个正整数,称为勾股数.经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.
解:设甲班的人数为x人,乙班的人数为y人,根据题意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人数为48人,乙班的人数为45人.方法总结:设未知数时,一般是求什么,设什么,并且所列方程的个数与未知数的个数相等.解这类问题的应用题,要抓住题中反映数量关系的关键字:和、差、倍、几分之几、比、大、小、多、少、增加、减少等,明确各种反映数量关系的关键字的含义.三、板书设计列方程组,解决问题)一般步骤:审、设、列、解、验、答关键:找等量关系通过“鸡兔同笼”,把同学们带入古代的数学问题情景,学生体会到数学中的“趣”;进一步强调数学与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神;进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.
8.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0)则光线从A点到B点经过的路线长是( )A.4 B.5 C.6 D.7第四环节课堂小结1、关于y轴对称的两个图形上点的坐标特征:(x , y)——(- x , y)2、关于x轴对称的两个图形上点的坐标特征:(x , y)——(x , - y)3、关于原点对称的两个图形上点的坐标特征:(x , y)——(- x , -y)第五环节布置作业习题3.5 1,2,3四、 教学反思通过“坐标与轴对称”,经历图形坐标变化与图形的轴对称之间的关系的探索过程, 掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发学生对数学学习的好奇心与求知欲,学生能积极参与数学学习活动;积极交流合作,体验数学活动充满着探索与创造。教学中务必给学生创造自主学习与合作交流的机会,留给学生充足的动手机会和思考空间,教师不要急于下结论。事先一定要准备好坐标纸等,提高课堂效率。
1.会用计算器求平方根和立方根;(重点)2.运用计算器探究数字规律,提高推理能力.一、情境导入前面我们通过平方和立方运算求出一些特殊数的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究点一:利用计算器进行开方运算 用计算器求6+7的值.解:按键顺序为■6+7=SD,显示结果为:9.449489743.方法总结:当被开方数不是一个数时,输入时一定要按键.解本题时常出现的错误是:■6+7=SD,错的原因是被开方数是6,而不是6与7的和,这样在输入时,对“6+7”进行开方,使得计算的是6+7而不是6+7,从而导致错误.K探究点二:利用科学计算器比较数的大小利用计算器,比较下列各组数的大小:(1)2,35;(2)5+12,15+2.解:(1)按键顺序:■2=SD,显示结果为1.414213562.按键顺序:SHIFT■5=,显示结果为1.709975947.所以2<35.
解析:从各点的位置可以发现A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2015=503×4+3,所以点A2015在第二象限,纵坐标和横坐标互为相反数,所以A2015的坐标为(-504,504).故填(-504,504).方法总结:解决此类题常用的方法是通过对几种特殊情况的研究,归纳总结出一般规律,再根据一般规律探究特殊情况.三、板书设计轴对称与坐标变化关于坐标轴对称作图——轴对称变换通过本课时的学习,学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本作图技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发数学学习的好奇心与求知欲.教学过程中学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣.
属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。
说教材本文是部编版八年级语文下册第四单元的一篇课文,也是一篇幽默风趣的演讲稿。文章介绍了王选先生一生的重要抉择和贡献,并将自己的一生的抉择与祖国的发展密切结合起来。说学情学生对王选先生有一定的了解,在介绍他一生重要抉择时学生更容易理解王选先生爱岗敬业,勤奋工作的精神并深受鼓舞。教学目标1、识记王选极其重大贡献2、识记课文主要词语3、通读全文,了解王选一生中经历的几次重大选择。4、学习王选先生专注于科研、无私奉献的精神教学重点王选一生中经历的几次重大选择教学难点从这几次选择中分析王选先生的精神教学方法研读法、讨论法
1、走进课堂、汇报总结因为是预习后的课,所以我直接问“昨天老师布置了预习作业,你都学会了什么”从孩子们掌握的知识切入,进行新授。让学生总结出2、5的倍数的特征,奇数与偶数的概念,以及既是2的倍数,又是5的倍数的特征。二、尝试练习检验学生预习效果,这是数学预习不可缺少的过程。数学学科有别于其他学科的一大特点就是要用数学知识解决问题。学生经过自己的努力初步理解和掌握了新的数学知识,要让学生通过做练习或解决简单的问题来检验自己预习的效果。既能让学生反思预习过程中的漏洞,又能让老师发现学生学习新知识时较集中的问题,以便课堂教学时抓住重、难点。因为是预习之后的课,所以练习题的难度比较高,安排了不同难度的练习题来巩固新知识。三、设置下节课预习任务设置下节课的预习任务,是进行下节课内容的铺垫,让孩子们按着一定的方案有计划、有目标地对下节课进行预习,以便下节课的教学活动。
四、说教学环节1、复习旧知,揭题导入教师用课件展示毛泽东同志对鲁迅先生的评价语,导入:毛泽东同志一连用了5个“最”字,论定了鲁迅先生在中国现代文化史上的无可替代的地位。1936年10月16日,鲁迅先生因病逝世,临终他说,“赶快收殓,埋掉,拉倒”,“忘记我,管自己的生活”。然而,人们真的那么容易忘掉他吗?事隔十三年后,诗人臧克家在北京参观了鲁迅故居,有感而发,写下了诗歌《有的人》。今天,我们就来学习这首诗歌。看到题目,你们对这首诗歌会有什么问题?理解题目的意思吗?你想从中知道什么呢?(设计意图:引用伟人对鲁迅先生的评价,为学生理解本课的内容和思想定下基调,为下面的学习铺垫。同时让学生对学习内容发出疑问,产生学习的兴趣和动力。)
五、说教学过程 (一)创设情境,揭示课题。 以前面学习的课文《我的伯父鲁迅先生》进行回顾导入,将学生再次带入到鲁迅逝世的场景中,感受人们对他的爱戴。适时补充本诗的写作背景,奠定理解诗歌的感情基调,为学生理解内容做好铺垫。 (二)诵读全诗,整体感知。 给学生充足的时间让学生自主探究,读准字音,把诗句读流畅。 播放朗读音频,学生倾听,练习朗读。指七名学生分节读,教师随机点拨。本首诗学生读通顺是没问题的,但这首诗歌感情色彩强烈,爱憎分明,重点是要读出感情。因此播放音频朗读,一是让学生在倾听中感受诗人的强烈感情,二是仿照练习,读好节奏、声调等,帮助在理解诗歌后更好地感情朗读。 默读并思考:这首诗在内容和写法上你发现了有什么特别之处吗? 引导学生感受诗歌对比和反复的特点,找出具体的对比内容,为后面的理解学习做好准备。
(二)过程与方法:1、通过拼读、练习、组词等方法达到正确读写本课生字、新词的目的;2、通过默读、指导感情朗读等多种形式的朗读训练,质疑、讨论、小组合作学习等形式的学习,达到理解含义深刻的句子,体会文章的思想感情的目的;3、通过教师指导、学生独立思考完成填空练习的方法,学习掌握作者抓住人物语言、动作、神态描写表现人物品质的方法。(三)情感、态度与价值观:通过本课的学习,让学生感受鲁迅先生爱憎分明,为自己想得少,为别人想得多的崇高品质,从而激发学生对鲁迅先生的崇敬之情。(四)教学重点:引导学生学习作者抓住人物语言、动作、神态描写表现人物品质的方法。(五)教学难点:理解4句含义深刻的句子,感受鲁迅先生的崇高品质。
二、教学目标针对本人对教材的理解,结合中年级学生好奇心强,求知欲日益增加,但他们的认识能力有限,对文字描写的景象难以形成深切体会,这一年龄特征,以及新课标对本年段的基本要求,我将本篇课文安排为两课时进行教学。第一课时的教学目标是1、认识5个生字,会写6个生字,理解“呼风唤雨”等16个词语的意思。2、了解科学技创造的奇迹及威力。3、感受科学技术发展的惊人速度及变化。这里,了解20世纪科学技术给人类带来的巨大变化是第一课时的教学重点,理解课文中一些含义深刻的词语和句子是第一课时的教学难点第二课时的教学目标是,1、品读课文,体会语言简洁,条理清楚的表达特点,能联系生活实际,谈出自己的阅读感受。2、激发热爱科学的情感以及学习科学、探索科学奥秘的兴趣。三、说教学过程。下面我将第一课时的教学流程、设计意图以及教法学法进行具体阐述。预习是求知过程的一个良好开端,注重课前的有效预习,能更好地提高课堂教学的有效性。所以我在课前布置学生预习:预习课文勾画自学生字词,标记自然段序号;尝试理解词语,收集的有关20世纪重大科技发明的文字和图片资料
一、说教材。《什么比猎豹的速度更快》是人教版五年级上册第二单元的一篇课文。这是一篇说明文。这篇文章按照由慢到快的顺序,介绍了9种事物的速度,向我们普及了科学知识。二、说学生。五年级的学生已经具备了一些相关的知识,也具备了一定的自学能力,因此,学生们在自学的基础上理解课文应该没问题。三、说目标。1.会认“隼、瀚”等5个生字,会写“冠、俯”等10个生字,掌握“冠”这个多音字,及“猎豹、鸵鸟”等词语。2. 快速阅读课文,理解课文内容,明白课文是按照事物由慢到快安排的写作顺序。
四、说教法学法 1.教法:本课遵循教师为主导,学生为主体,训练为主线的原则,注意主体的参与,发展思维,培养学习能力,以达到教学目标,使用的方法为:情境教学法、直观演示法、合作探究法,品词析句法、以读带讲法,练习法,讨论法,指导法等激发学生学习兴趣,充分发挥学生的主体作用,提高课堂教学效率。 2.学法:指导学生运用读、思、划、议、说,同桌互学,小组合作等方法。五、说教学过程:(一)创设情景,导入新课。 同学们,当你按动遥控器看电视的时候,当你打开冰箱取饮料的时候,当拨通电话与同学交谈的时候,当你登录网站查阅资料的时候,你能感觉到什么?板书课题,理解课题。简单介绍作者路甬祥及本文的写作意图。 设计依据:创设情景,导入新课,一开始就抓住了学生的注意力,激发学生的学习兴趣和情感,自然引入课文。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。