意图:(1)介绍与勾股定理有关的历史,激发学生的爱国热情;(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第六环节: 回顾反思 提炼升华内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.
探究点二:勾股定理的简单运用如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,A1B1=8km.现要在高速公路上A1、B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离和.解析:运用“两点之间线段最短”先确定出P点在A1B1上的位置,再利用勾股定理求出AP+BP的长.解:作点B关于MN的对称点B′,连接AB′,交A1B1于P点,连BP.则AP+BP=AP+PB′=AB′,易知P点即为到点A,B距离之和最短的点.过点A作AE⊥BB′于点E,则AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B两村庄的最短距离和是10km.方法总结:解这类题的关键在于运用几何知识正确找到符合条件的P点的位置,会构造Rt△AB′E.三、板书设计勾股定理验证拼图法面积法简单应用通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,学会勾股定理的应用并逐步培养学生应用数学解决实际问题的能力,为后面的学习打下基础.
方法总结:利用三角形三边的数量关系来判定直角三角形,从而推出两线的垂直关系.探究点二:勾股数下列几组数中是勾股数的是________(填序号).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①组不符合勾股数的定义,不是勾股数;第③④组不是正整数,不是勾股数;只有第②组的9,40,41是勾股数.故填②.方法总结:判断勾股数的方法:必须满足两个条件:一要符合等式a2+b2=c2;二要都是正整数.三、板书设计勾股定理的逆定理: 如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.勾股数:满足a2+b2=c2的三个正整数,称为勾股数.经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.
方法总结:本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况.如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、板书设计1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(等角对等边).2.反证法(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.解决几何证明题时,应结合图形,联想我们已学过的定义、公理、定理等知识,寻找结论成立所需要的条件.要特别注意的是,不要遗漏题目中的已知条件.解题时学会分析,可以采用执果索因(从结论出发,探寻结论成立所需的条件)的方法.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.
三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可证:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
(一)开展宣传教育,提高执行野生动物保护法的自觉性。全市上下利用“世界湿地日”“爱鸟周”以及“保护野生动物宣传月”等主题活动为契机,通过各种形式宣传保护野生动物科普知识和野生动物保护法。开展自然知识进课堂活动,举办野生动植物保护知识专题讲座。20**年、20**年分别在鄱阳、余干县承办全省“爱鸟周”宣传活动启动仪式,并且成功举办了“麋鹿回归”“青出于蓝而胜于蓝:蓝冠噪鹛科学发现百年”纪念活动、“2019鄱阳湖国际观鸟周”等一批在国内外具有一定影响力的宣传纪念活动。积极引导广大群众增强野生动物和生态环境保护意识。
一、做好停车场收费设施维护安检工作,使得收费工作可以有条不紊顺利进行。 二、加大力度对停车场的设施进行维护保养,积极跟进停车场的硬件设施改造。 三、召集收银员进行系统培训,充分利用工作和业余时间,以最快的速度掌握操作要领,提高服务意识。
一是要提高教育者的法律意识,使教育者自觉遵守法律规定。了解法律并遵守法律,应落实到每一位教师在日常教学的具体行动中。 二是要了解并尊重未成年人的客观需要,不以教师的主观意愿去要求孩子。未成年人正处在生长发育的过程中,有其自身的需要和特点。比如孩子好动,不可能像成年人那样长时间安静地坐着不动。因此,教师应充分认识和理解未成年人发展的客观规律,不能凭者自己的主观意愿去看待孩子、要求孩子。
孩子们是国家的未来祖国的希望,我们对他们的合法权给予特殊呵护,也是一项具有挑站性的工作,这需要全社会共同参与到其中,我们每一个人一起完成,共同维护未成年人合法权益,更好的履行自己的责任和义务,让孩子们活泼健康快乐的成长,成为一代强人,将来为祖国做出更大的贡献。
孩子们是国家的未来祖国的希望,我们对他们的合法权给予特殊呵护,也是一项具有挑站性的工作,这需要全社会共同参与到其中,我们每一个人一起完成,共同维护未成年人合法权益,更好的履行自己的责任和义务,让孩子们活泼健康快乐的成长,成为一代强人,将来为祖国做出更大的贡献。
二、适用范围本制度适用于大唐彬长发电有限责任公司疫情燃料供应紧缺事件的应急处理三、应急处置基本原则遵循“安全第一,预防为主,综合治理”的方针,坚持防御和救援相结合的原则。统一领导、分工负责、加强联动、快速响应,最大限度的减少突发事件造成的损失。四、事件类型、影响范围及后果疫情防控期间燃料供应紧缺是指当全厂库存煤量低于警戒线或因缺煤被迫降低机组出力运行或停机,可能影响企业的正常生产、生活的情况,甚至直接危及电网。
(一)初审。申报单位向失业保险经办机构提交《失业保险应急稳岗返还补贴申请表》及相关材料,由失业保险经办机构对申报单位进行初审。初审通过后将相关材料送至第三方审计师事务所进行审计,并出具审计意见。 (二)审批。xx市人社局暂时性生产经营困难企业认定工作领导小组对申报单位进行审核认定。经审核认定后,对符合条件的单位按失业保险援企稳岗审批程序予以审批。单笔资金超过xxx万的企业报市政府审批,同时报省人社厅、省财政厅备案,审批通过的单位在xx市人社局官网进行公示。公示期满无异议的,将审批结果反馈给失业保险经办机构。 (三)资金拨付。失业保险经办机构收到审批通过结果后按照基金管理规定对申报单位进行资金拨付。
全球资源日益减少,环境保护也日显紧迫,保护生态环境是我们每个人义不容辞的责任和义务。而我们的孩子生活无忧,社会环保意识淡泊,经常做出乱摘花草,随意攀登树木等行为,这些看似毫不在意的事情,却给我们敲响了警钟,不得不令我们幼教工作者产生重重的忧患。而《纲要》中也明确指出:教育幼儿爱护动植物、关心周围环境、亲近大自然、珍惜自然资源,有初步的环保意识。所以对幼儿进行认识和保护生态环境的教育是一件刻不容缓的事情。 树,在幼儿生活中随处可触,但幼儿对树的认识也只是停留在表面,很少有幼儿进一步去理解树和人们的生活是息息相关的,植树造林对提高人们生活质量的益处。因此,对“树”的深层次的探究已是一个迫不及待的工作了。故而,我为大班幼儿设计了一堂社会环保课----《植树造林》。
2、通过师生共同讨论,掌握科学用脑,保护大脑的基本方法。 3、丰富人体形态结构的认知,提高保护意识。活动准备: 关于大脑的图片。活动过程: 一、出示关于大脑的图片,帮助幼儿形成对大脑的初步认识。 1、你知道身体里的总师令在哪里? 2、为什么说大脑是我们的总司令呢? 3、小结:我们写字、画画、作游戏等,都是由大脑来指挥的,所以大脑是我们的总司令。 4、引导幼儿看图,教师向 幼儿介绍简单的知识。 大脑有左右脑,有脑神经,有脑干。大脑负责智力活动,小脑负责运动。大脑中不同的神经负责不同的活动,有的负责吃饭,有的负责睡觉,有的负责唱歌等等。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。