(1)该校被抽查的学生共有多少名?(2)现规定视力5.1及以上为合格,若被抽查年级共有600名学生,估计该年级在2015年有多少名学生视力合格.解析:由折线统计图可知2015年被抽取的学生人数,且扇形统计图中对应的A区所占的百分比已知,由此即可求出被抽查的学生人数;根据扇形统计图中C、D区所占的百分比,即可求出该年级在2015年有多少名学生视力合格.解:(1)该校被抽查的学生人数为80÷40%=200(人);(2)估计该年级在2015年视力合格的学生人数为600×(10%+20%)=180(人).方法总结:本题的解题技巧在于从两个统计图中获取正确的信息,并互相补充互相利用.例如求被抽查的学生人数时,由折线统计图可知2015年被抽取的学生人数是80人,与其相对应的是扇形统计图中的A区,而A区所占的百分比是40%,由此求出被抽查的学生人数为80÷40%=200(人).
某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,据此列出方程为1.2×0.8x+2×0.9(60-x)=87.故选B.方法总结:解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,最后列方程.三、板书设计教学过程中,通过对多种实际问题情境的分析,感受方程作为刻画现实世界有效模型的意义,通过观察、归纳一元一次方程的概念,使学生在分析实际问题情境的活动中体会数学与现实的密切联系.
方法总结:让利10%,即利润为原来的90%.探究点三:求原价某商场节日酬宾:全场8折.一种电器在这次酬宾活动中的利润率为10%,它的进价为2000元,那么它的原价为多少元?解析:本题中的利润为(2000×10%)元,销售价为(原价×80%)元,根据公式建立起方程即可.解:设原价为x元,根据题意,得80%x-2000=2000×10%.解得x=2750.答:它的原价为2750元.方法总结:典例关系:售价=进价+利润,售价=原价×打折数×0.1,售价=进价×(1+利润率).三、板书设计本节课从和我们的生活息息相关的利润问题入手,让学生在具体情境中感受到数学在生活实际中的应用,从而激发他们学习数学的兴趣.根据“实际售价=进价+利润”等数量关系列一元一次方程解决与打折销售有关的实际问题.审清题意,找出等量关系是解决问题的关键.另外,商品经济问题的题型很多,让学生触类旁通,达到举一反三,灵活的运用有关的公式解决实际问题,提高学生的数学能力.
用四舍五入法将下列各数按括号中的要求取近似数.(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)47155(精确到百位);(4)130.06(精确到0.1);(5)4602.15(精确到千位).解析:(1)把千分位上的数字2四舍五入即可;(2)把十分位上的数字9四舍五入即可;(3)先用科学记数法表示,然后把十位上的数字5四舍五入即可;(4)把百分位上的数字6四舍五入即可;(5)先用科学记数法表示,然后把百位上的数字6四舍五入即可.解:(1)0.6328≈0.63(精确到0.01);(2)7.9122≈8(精确到个位);(3)47155≈4.72×104(精确到百位);(4)130.06≈130.1(精确到0.1);(5)4602.15≈5×103(精确到千位).方法总结:按精确度找出要保留的最后一个数位,再按下一个数位上的数四舍五入即可.三、板书设计教学过程中,强调学生自主探索和合作交流,经历观察、操作、归纳、积累等思维过程,从中获得数学知识与技能,体验教学活动的方法,发展推理能力,同时升华学生的情感态度和价值观.
1、掌握有理数混合运算法则,并能进行有理数的混合运算的计算。2、经历“二十四”点游戏,培养学生的探究能力[教学重点]有理数混合运算法则。[教学难点]培养探索思 维方式。【教学过程】情境导入——有理数的混合运算是指一个算式里含有加、减、乘、除、乘方的多种运算.下面的算式里有哪几种运算?3+50÷22×( )-1.有理数混合运算的运算顺序规定如下:1 先算乘方,再算乘除,最后算加减;2 同级运算,按照从左至右的顺序进行;3 如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。 加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。注意:可以应用运算律,适当改变运算顺序,使运算简便.合作探究——
学习目标1.掌握两个一次函数图像的应用;(重点)2.能利用函数图象解决实际问题。(难点)教学过程一、情景导入在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示.请你根据图象所提供的信息回答下列问题:甲、乙两根蜡烛燃烧前的高度分别是 厘米、 厘米,从点燃到燃尽所用的时间分别是 小时、 小时.你会解答上面的问题吗?学完本解知识,相信你能很快得出答案。二、 合作探究探究点一:两个一次函数的应用(2015?日照模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分线定义).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代换).又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴DF∥BE(内错角相等,两直线平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分线定义),∠ADE=∠1(等量代换).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形内角和为180°及等量代换),即∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行).方法总结:解此类题应首先结合图形猜测结论,然后证明.证明两条直线平行,一般先找它们的截线,再求同位角相等(或内错角相等,同旁内角互补)来说明两直线平行.若没有公共截线,则需作出两直线的截线辅助证明.三、板书设计平行线,的判定)判定公理:同位角相等,两直线平行判定定理内错角相等,两直线平行同旁内角互补,两直线平行本节课通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式.
方法总结:题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.探究点二:利用勾股定理求面积如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中△ABE的面积为________,阴影部分的面积为________.解析:因为AE=BE,所以S△ABE=12AE·BE=12AE2.又因为AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因为AC2+BC2=AB2,所以阴影部分的面积为14AB2+14AB2=12AB2=12×32=92.故填94、92.方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.
意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.教学设计反思(一)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.
证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)活动目的:让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明第2小题中,要引导学生找到一个过渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等关系的传递性得出∠1>∠2。
意图:(1)介绍与勾股定理有关的历史,激发学生的爱国热情;(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第六环节: 回顾反思 提炼升华内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.
在尊重学生已有的知识与经验基础上,努力营造一个充满“磁性”的课堂环境。着眼与培养学生的创新素质,作好学生学习活动的组织者、引导者、参与者,使每一名学生都能得到不同程度的发展。二、教材分析1.教材的地位和作用说课的内容是人教版六年级上分数乘法的应用题,分数乘法单元中求一个数的几分之几是多少的简单应用题。拟引导学生在提出和解决实际问题的过程中,学习“求一个数的几分之几是多少”的问题的解答方法。是在初中第一个培养学生应用意识的问题,能开发学生的创新思维,也是后面分数除法应用题的基础。《数学课程标准》倡导学习大众的、现实的、有价值的数学理念,因此教师在教学中,应该从学生熟悉的生活现实出发,让学生由具体的问题引入现实情境。将解决现实问题与学习分数乘法的知识相结合,帮助学生理解分数乘法应用题的计算方法,有利于培养学生解决实际问题的意识和能
第一:导课。在这个环节中,首先对学生提出《课堂常规》要求,以对口令、比一比的形式,让学生了解《常规》、遵守《常规》;再复习8、9的组成,为熟练口算扫清障碍。第二:新课。1、结合情境,引导学生充分感受“一图四式”。由于学生已经有了看一幅图列出两个算式的基础,所以列出加法算式相对容易一些,而列出减法算式则是这部分的难点。因此我采用小组合作的方式,让学生以看图说话的方式搜集相关数据,初步感知根据一幅图可以列出四道不同的算式。2、在老师的指导下进行操作,通过摆苹果图使学生进一步巩固和理解“一图四式”。在计算过程体现加减法之间的联系。3、帮助学生积累计算方法,为学生提供创造的空间。直接出示算式5+3、3+5、8-3、8-5计算,提问:你是怎样算出得数的?鼓励学生说出多种计算方法,使计算方法多样化(如:数数、想数的组成与分解、调换加数的位置、算减法想加法等)。
《0的认识和有关0的加减法》是《数学(人教版义务教育课程标准实验教科书)》一年级上册第29页的教学内容。数字0在生活中应用广泛,不同的应用体现出0的不同含义,有关0的加减法也具有其独特的规律和特点。本节课教学目标有下:1.通过游戏、活动,使学生理解0的含义,会读、会写数字0,了解数的顺序。2.使学生在情境体验中理解有关0的加、减法的含义,并能熟练计算。3.通过在数学活动中的观察、思考、讨论、探索,提高学生自主学习的意识和发现简单规律的能力。4.培养学生的想像力、语言表达能力和初步的推理应用能力。教学实录与评析:一、活动中认识0──关于0的含义和书写1.排排队──复习数的顺序。师:这节课,数字王国有几位小客人要到咱们教室找朋友。他们来了。(敲门声)
在组织教学和设计习题时,我考虑到了以下几点。1.培养“主角”意识,人人参与,人人提高。新理念下倡导自主学习,学生是学习的主人。本节课始终是学生在自主地解决问题、发现问题、解决问题。在教师的合作下,学生利用已有的知识经验,积极思维,提高了他们的分析综合能力,帮助他们掌握了解决数学问题的规律。同时,我力求让每个学生都体会到学习数学的快乐,在练习中,通过用手指表示得数,将式子列在自己的纸板上,小组交流,抢答等形式,让每个学生都动起来,都得到需要的数学知识。2.知识前后联系,融会贯通。在习题练习中,我注意多元化、开放化,需要学生将知识进行综合内化,来解决问题,这也是一种数学素养。比如决定上几号车厢,必须进行计算──统计──比较的思维活动;野生动物园情境列式中需选择条件,留有充分的思考空间;“海洋公园”情境中学生又初步有了两步计算的意念。3.充分利用小组合作学习的优势。
一年级的小学生参与数学教学活动的关键就是要调动起学生对数学学习活动的兴趣,整节课我充分利用多种手段创设生动活泼的问题情境,让学生在生动活泼的问题情境中受到感染,产生兴趣,自觉参与到教学活动中来,进而体验到参与学习、获得成功的快乐。引导学生进一步理解减法的意义是本节课的重点,用肢体语言演示让学生扎扎实实的掌握3个方面的知识点:第一点要会说,能从图中找到与数学有关的信息,并能恰当地提出一个问题;第二点会数,能准确地数出原来有多少、去掉几个就是减几,去掉的这个数是从总数里去掉的;第三点会列算式,并让学生在此基础上创造性的根据算式来编一个故事,并提出问题,让学生在不知不觉中学会了举一反三,从而做到一通百通。 本节课我始终遵循这样一个教学原则,即知识的起点由低到高,由易到难,循序渐进,一步一步逐渐引导学生做到举一反三,一通百通。 三、说学法 这部分内容的学习适于学生展开观察、操作、交流等教学活动。为了更好地指导学法,我采用合作形式组织教学。这样,一方面可以让学生自己去发现,体验创造的过程;另一方面,也可以增强学生的合作意识,在互动中迸出智慧的火花。
教学重难点及突破措施:本节课的重点是能够正确计算得数是6、7的加减法,掌握计算方法。难点是感受数学知识与生活的紧密联系,能用6、7的加减法列式解决问题。对于教材重难点的确定,我是通过如下个方面的分析得出的:1、从教材知识点分析:6和7的加减法在生活中应用广泛,同时它又是进一步学习8和9以及10的加减法的最直接的基础。2、从学生心理特点和认知规律来分析:学生的思维能力和语言表达能力不是很强,通过观察的不同角度,能够列出不同的算式。一、复习6、7的组成及分解在上课之前,我先让学生背诵6 、7的组成及分解。这个内容在上《6和7的认识》这一课时时就已经让学生学习。在上新课前让学生背诵,一是让学生复习巩固以前的知识,二是为接下来计算6、7的加减法时做好铺垫。
1、教材分析:本课教学是在学生比较熟练地掌握了10的组成,并且通过前面1-9的学习,已经为本课学习作了知识上的铺垫。同时10的加减法是学生今后学习20以内进位加和退位减的重要基础。通过学习实现学生由看图数数计算到想数的组成计算的能力培养,同时也可以体会到迁移的应用。2、教学目标:基于对教材的分析和理解,对学生实际情况和认知规律的掌握,我希望本节课能够达到以下3个教学目标:(1)、能够准确、熟练地计算10的加减法,提高学生计算能力。(2)、通过动手操作、自主探究和合作学习,在有趣的情境中学习数学、解决问题。(3)、培养学生学习数学的乐趣,增强学好数学的信心,促进学生全面发展。3、教学重难点:教学重点:是使学生自主学会10的加减法。教学难点:是运用所学知识解决实际问题
第二层:教学例6。1、出示11根小棒,再出示2跟小棒,一共有多少根小棒?该怎样列算式?用自己的小棒摆一摆,说一说你是怎么想的?2、在计数器上演示11+2=13的过程。强调2要加到个位上去,强调十位上的一表示一个十,个位上的一表示一个一。3、演示从13根小棒中去掉2根小棒,还剩多少根小棒?该怎样列算式?用自己的小棒摆一摆,说一说你是怎么想的?4、请学生上台演示13-2=11的过程。使学生理解算理。5、学习加法和减法算式各部分的名称。并简单介绍加法算式和减法算式各部分之间的关系。第三个环节:开展练习,实践应用1、完成课本第88页中“做一做”的第一题。第一小题:看左图,指名让学生说出图意,再试着把左边的算式填写完整。(对有困难的学生适当地进行引导)第二小题:看右图,指名让学生说出图意,再仿照第一题写出四道算式。
1、出示第78页例3,创设开运动会买矿泉水的情景,激发学生的学习兴趣,同时也对学生提出了要求,“谁能提出一个用乘法计算的数学问题,你会编一道应用题吗”。既培养了学生的观察能力,又让学生在具体的情境提出问题,直观地感受到生活中处处有数学。2、学生看图后能正确列式:24×9=3、学生尝试计算,计算过程中遇到困难,可以同桌商量着完成.同桌互查,反馈信息。指名板演,说出计算的顺序和过程,集体订正.这题的计算完成了吗?为什么?(还得在横式的等号后填上得数和单位)。以此培养学生观察仔细,办事严谨、认真,从不敷衍了事的好作风。6、小结:从多位数的个位乘起,个位满几十就要向十位进几,十位的积要加上进上来的数,又要向百位进位.(三)巩固练习1、完成教材下面的"做一做"中的一道题。教师巡视,且及时级予个别辅导。全班完成后,指名说出每题计算的全过程,予以共同订正。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。