切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
(一)为何禁止青少年吸烟:根据世界卫生组织的统计,在世界各地每8秒钟就有一人死于与吸烟有关的疾病,每年有近500 万人因吸烟致死。这一数字在未来20 年中将有可能增加一倍。吸烟已经成为世界上最主要的致死因素之一。我国是一个烟草大国,目前吸烟人数约为3.2亿。在控制未成年人吸烟这个问题上,政府做了大量的工作,并于去年11月10日签署了联合国《烟草控制框架公约》,这一公约将于今年2月28日正式生效。但一个不容回避的事实是:在我国,未成年人吸烟率呈上升趋势,未成年人开始吸烟的年龄在下降,每天有8 万左右青少年成为长期烟民。这种状况不但影响了孩子的健康成长,而且严重影响我国整体国民身体素质的提高,所以未成年人吸烟问题越来越引起社会的广泛关注。
本次活动我设计以下三个环节:一、展示《我想帮忙》课件,引导幼儿看图说话,并认读词语:帮忙。二、引导幼儿情境讲述,进一步理解画面内容。三、尝试表演,感受和体验河马助人为乐的情感。一、展示《我想帮忙》课件,引导幼儿看图说话,并认读词语:帮忙。1、谈话导入:(教师神秘地说)告诉大家一个秘密:老师发现了一群小动物们之间的故事,你们想知道吗?可是,小动物们说了要想知道它们的秘密必须靠小朋友自己,要用自己的小眼睛认真观察,动脑筋思考,还要大胆回答出问题才行呢!大家能做到吗?就让我们一起来试试吧!(出示幻灯一)引导幼儿说说画面中的小动物们都在干什么。(出示幻灯二)猜猜“河马会怎么帮忙呢?”(这样的设计就是抓住幼儿喜欢小动物的心理,利用幼儿观察小动物们生活化的动作形态和解答悬疑问题,激发幼儿的学习兴趣。)2、(出示幻灯三——六)在展示画面的过程中,引导幼儿认真观察,鼓励幼儿大胆、清楚地表达自己的想法和感受,发展幼儿的语言表达能力和思维能力,并使幼儿养成注意倾听的好习惯。3、认读词语:帮忙。利用字卡和情境画面帮助幼儿直观形象地去了解、认识词语,再通过游戏《帮字宝宝找朋友》进一步加深理解词语。
一、地震的危害 1、孩子们,老师搜集到一段录像,让我们看看发生了什么事情。(播放视频)提问:录像上发生了什么事情?你看到了什么?(幼儿发言)小结:是啊!刚才录像中大楼在摇晃,地面发出了剧烈的声响,这就是地震。 2、地震对我们来说是一个很大的灾难,到底给我们带来了什么危害?让我们来看一看。小朋友,可以把你看到的和旁边的小伙伴说说。(教师走下去,听一听,问一问)再请个别幼儿起来说一说。
活动目标: 1、通过玩游戏,熟悉乐曲旋律,演唱歌曲《小兔和狼》。 2、用身体动作表现歌曲内容,创编不同的造型。 3、体验音乐游戏带来的乐趣。 活动准备: 1、背景图 2、大灰狼头饰、小兔头饰 3、小图片若干 活动过程: 一、故事导入 1、师:孩子们,看,谁来我们班做客了?(小兔子)我们和小兔子打个招呼吧! 小兔子:小朋友们好!幼儿:小兔子好! 2、小兔子:小朋友们,今天我给你们讲个故事!你们想听吗?(讲述故事) 一天,小小兔子跳呀跳呀跳到树林里玩,它竖起耳朵仔细听,听到风儿在呼呼地吹,树叶沙沙地响。正当小兔子玩的开心的时候呀,只听!嘭!嘭!哎呀,不好,来了一只大灰狼,吓的小兔赶紧躲了起来,聪明的小兔子躲在大树丛中,大灰狼没有发现它,灰溜溜地走了,小兔又高高兴兴地出来玩了。 3、师:故事好听吗?谁来说说在故事里你听到了什么? 幼儿:小兔子、狼。(出示背景图,图片小兔子、狼) 4、师:小朋友们听的真仔细!
活动准备: 1、张贴小帆船的图片或照片。 2、请坐过小船的幼儿,谈谈船在水上面飘荡的感受。活动过程: 一、在《小白船》乐曲的伴奏下,做划小船动作引起活动兴趣。二、学唱歌曲《小小帆船》。 1、听音乐,说出音乐是几拍子的。 2、和教师一起用拍手等动作表现3/4拍节奏。 3、注意掌握歌曲的句首重音。 4、教师范唱。幼儿说出歌曲内容。 5、轻声完整学唱。教师用表情,手势暗示幼儿,掌握休止时值。
活动准备:玩过《看谁反应快》的游戏。 活动过程: 一、复习歌曲《家》。 用连贯、跳跃的唱法表现歌曲的抒情和欢快。 二、熟悉歌曲《谁是小熊》并边唱边表演。 1、教师范唱。 2、说出歌曲内容,学唱歌曲。 3、在教师带领下,学习边唱歌曲边做动作。 三、学玩游戏。 1、了解游戏情节。倾听音乐(二)。 “小熊在树林里,山洞里到处游荡,它到底在哪儿呀?我们来找找吧!”
[活动目标]1、鼓励幼儿在生活中做一个善于观察的有心人。2、进一步培养幼儿的语言表达能力、观察能力、思维想象力和分析能力。3、帮助幼儿认识生活中的一些常见标志,懂得基本的安全知识,提高自我保护能力。[活动准备]1、请家长协助带孩子在生活中观察常见的安全标志。2、各种标志、图片若干。3、布置好的“安全标志图片展览”4、音乐磁带。[活动过程] 一、教师组织幼儿在音乐声中进入活动室,并参观布置好的“安全标志图片展览”幼儿边看边说说自己认识哪些标志,它们有什么意义。(评析:幼儿在音乐声中进入活动,会有一个轻松愉快的开始,为活动打好铺垫。参观图片展,能给幼儿一个整体的印象,他们在看看说说的过程中,会互相学习,这也体现了纲要中提到的“注重幼儿间的相互作用”)
2、培养幼儿思考问题、解决问题的能力及快速应答能力。 3、引导幼儿了解一些自我保护的常识,知道不能轻信陌生人的话,不跟陌生人走。[活动准备] 1、排练情景表演:小红没上当。 2、录制有关轻信陌生人上当受骗的内容。如:自己在家时随便给陌生人开门,随便吃陌生人给的食物,在公共场所迷路了随便跟陌生人走等造成不良后果,选择适合幼儿看的有关打击拐卖儿童的记录片。[活动过程]一、请幼儿观看情景表演“小红没上当”,教师在主要部分给以提示。
活动准备:1、课前带领幼儿有秩序的在户外滑滑梯并注意幼儿的表现。 2、歌曲《滑滑梯》活动过程: 一、谈话活动: 教师组织幼儿谈话:刚才老师和小朋友在外面玩什么啦?怎样玩的?咱们又是怎样进的活动室?引导幼儿说出排着队,有秩序的滑滑梯、进出活动室等。 二、欣赏歌曲 教师告诉幼儿有一首歌曲也叫《滑滑梯》,请幼儿欣赏并尝试学着跟唱歌曲。
2、锻炼幼儿遇事不慌、不怕危险困难的勇敢精神,能够保护自身安全。 教学准备: 字卡图片火灾场面范画自救图解教学过程: 一、出示‘火’字的字图卡,请幼儿观察 1、提问:这是什么字?“火” 首先出示图片让幼儿观看,其次让幼儿用知道“火”字是象形字,能解它的笔顺。那么火能燃着哪些东西?(布,木头、汽油、酒精、蜡烛等) 2、知道了火能发光发热,组织幼儿讨论火的用途和危害。 (1)我们的生活中离不开火,请幼儿说出火的用途。(烧饭、取暖、照明等) (2)火对人类有什么危害?(烧伤皮肤、烧毁财物、房屋、森林等)二、组织幼儿讨论并出示图片: (1)发生火灾的原因有哪些?(小孩玩火、乱丢火烟头、在禁放区燃放烟花、用明火照明寻找物、乱拉乱接电线等)
二、学情分析: 学生们对《品德与生活》的兴趣浓厚,他们喜欢和同伴进行交流,喜欢游戏活动,喜欢在活动中展示自己。三、指导策略:1、以活动贯穿全课。2、让学生在游戏活动中体验和感悟。3、将交警请到课堂,实现课堂的开放性。4、在交流合作中实现活动的有效互动。
活动准备: 受伤的事例图片 活动过程:1、启发幼儿结合生活经验,谈谈有关烧伤、烫伤、破伤的情况 教师:小朋友你们有没有不小心被烫伤、烧伤或者是摔到跌破、划破过呢?那是怎么样的呢?有什么感觉? 2、教师引导幼儿通过讨论的方法了解应该怎样避免受伤 (1) 教师鼓励幼儿讨论预防烧伤、烫伤、破伤的方法:小朋友有时候会不小心受伤,那我们平时应该怎样做才能避免受伤呢?(教师提供时间给幼儿结伴讨论,同时深入到幼儿的讨论当中,听听幼儿们说的有关情况是怎样的。)
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。