xx月,我有幸到XX师范大学参加了XX市小学骨干校长的培训。带着渴望,怀着激动,也带着对教育教学中的几点困惑,开始了为期七天的学习培训,整个活动在方文林教授的精心组织安排下,培训活动安排合理,内容丰富。让我们得以与众多教学专家面对面地进行互动交流,了解他们对学校管理的理解,学习他们先进的管理方法和理念;进一步了解发达地区的名校长对学校管理的造诣。很快为期七天的集中培训已经结束,在此期间,聆听着上海市教育理念最前沿的知名专家的报告,分享特级校长的办学经验和行之有效的管理操作方法。在交流和思想碰撞中感受到不同的校长的教育智慧,通过对上海市进才实验小学和金洲小学实地考察,感受其优质的教育和浓厚的学校文化,进而引发自己的思考。本次培训不仅让我拓宽了思路,开阔了视野,强化了学习与研究意识,而且也让我对下一步工作有了清晰的思路。在此我非常感谢各级领导为我提供了难得的学习机会,七天的学习,使我受益匪浅,现将学习心得总结如下: 一、校长要善于学习 校长应该是个学习者,要做好任何一项工作都要不断地学习,校长岗位更是如此。多看看,多想想,一些灵感不期而遇,工作局面就此打开。没有学习,就没有可持续发展——个人发展如此,学校发展也如此。通过学习,才能不断提高自身素质和领导能力,才能成为教学的行家里手,专家型校长。正像万航渡小学张雪龙校长在《文化办学造就有灵魂的教育》报告中所讲,读好书,做好人,校长应该是老师的老师,这就要求校长带头学习,引领教师做学习研究型教师,以文化引领学校发展,提高办学品位。这次学习真的让我重新燃起了对学习的渴望。
为了维护合同当事人的合法权益,委托人与受托人双方本着自愿、平等、协商一致的原则,就受托人接受委托人的委托提供自费出国留学中介服务事宜,达成如下协议:一、服务项目及费用第一条 委托人申请赴新加坡 院校外文名称, (院校中文名称)留学.第二条 受托人向委托人提供留学前往国家的咨询、代办入学申请手续等中介服务。第三条 当申请学生签证成功后,委托人向受托人缴付出国留学中介服务费合计为人民币(大写) 元,或者是等值新元。如果在申请学生签证成功后,委托人需要取消留学,需缴纳委托人40%的中介服务费用。第四条 受托人提供的服务包括:1 替委托人在指定的学校报名2 替委托人申请学生签证3 帮助委托人在新加坡找好住所4 在委托人来新加坡的时候接飞机5 帮助委托人熟悉学校环境6 帮助委托人办理银行卡,易通卡二、受托人义务第五条 提供信息1.受托人承诺向委托人提供的出国留学信息、宣传介绍材料、广告等,内容真实。2.受托人应当向委托人介绍前往国家的教育制度、留学政策、留学签证政策和申请留学院校的性质、办学资质、入学要求、入学申请程序等基本情况。4.受托人应当告知委托人申请留学院校的收费项目、收费标准和缴纳费用的办法。第六条 申请入学1.受托人代为委托人办理入学申请手续。2.受托人指导或为委托人办理缴纳报名费、学杂费等有关费用的手续。3受托人应当及时向委托人报告办理入学申请的进展、结果。第七条 办理签证1.受托人指导委托人进行签证申请准备,协助委托人办理签证或入境批准文件。第八条 其他1.如受托人为委托人办理申请入学、签证服务等,其收取的费用应在本合同第三条中介服务费中标明。2.如受托人代委托人向国外院校缴纳报名费、学杂费等费用,受托人应向委托人提供收费方的符合法律要求的证明文件。3.受托人对委托人提供的所有材料,均负有保密义务。除为委托人入学申请、签证申请的目的之外,不得向无关的第三方透露。
第一条 服务项目1、甲方同意委托乙方以甲方的名义申请赴 (国家)留学,留学类别属 (学历或非学历教育)。并同意乙方以甲方的名义与所赴国驻华使(领)馆联系,代为甲方办理申请签证手续。2、申请类型、学校名单(标准)、申请数量和所选择的相关专业等以《院校专业确认表》(见附件)为准。第二条 甲方的责任与义务1、甲方应符合中国公民自费出国留学的条件,遵守国家关于公民自费出国留学的规定。 2、甲方须按照乙方的要求向乙方提供申请学校及申办签证所需的甲方全部资料,但以为实现合同目的所必须的资料为限。在申办过程中,如前往国家的留学政策、签证政策或申请留学院校的入学要求等有关方面的政策、规定发生变动,需要甲方补充材料时,甲方须在乙方根据相关国家、学校或使(领)馆规定而向甲方提出补充文件材料的合理期限内提供所需的材料。甲方应保证及时、真实、全面地向乙方提供上述所有材料,如因甲方无法联系或提供材料不及时、不真实、不全面或提供不合法、无效的材料而导致申办不成,乙方不承担由此产生的后果。
1. 签约之前当事人应当仔细阅读本合同内容。2. 本合同文本中涉及到的选择、填写内容以手写项为优先。3. 本合同以盖有“中国(香港)留学生教育服务中心”正式公章及法人代表签章为有效合同。4. 本合同中涉及的中介服务费必须向中国(香港)留学生教育服务中心财务交纳(或汇入中国(香港)留学生教育服务中心指定账户中),以收到中国(香港)留学生教育服务中心开具的正式票据为收款凭证。如无中国(香港)留学生教育服务中心的正式票据,受托人有权停止履行该合同中任何的责任并对委托人交付的费用不付任何责任。5. 本合同中涉及学校申请费、使馆签证费、注册费、学校医疗保险费、住宿费、监护人费、接机费、学费、押金等,必须由受托人通知委托人向中国(香港)留学生教育服务中心财务或相关学校、领馆等机构交纳,以收到中国(香港)留学生教育服务中心或办事处开具的代收款票据为收款凭证。如无中国(香港)留学生教育服务中心开具的代收款票据,涉及一切款项转、交、退等责任,受托人概不负责。6. 委托人在办理申请过程中发生的护照、公证、体检、翻译、机票等杂费应向有关办理机构缴纳,如委托受托人代办,款项必须向中国(香港)留学生教育服务中心或办事处财务交纳,并以中国(香港)留学生教育服务中心开具的代收款票据为收款凭证,如无中国(香港)留学生教育服务中心的代收款票据,受托人对此业务概不负责。
今天,我要给大家聊聊美化校园的话题。我想现在可能会有一些同学在想,美化校园?我们的校园不是很美吗?你看校园里:操场上干干净净无纸屑,四周围绿树草皮话烂漫,楼房整齐一排排,同学们穿红着绿好漂亮,外面还有绿水青山来拥抱,谁敢说我们的校园不美吗啊?可是今天,我要实话实说:我们的校园里还有美中的不足,还存在着“丑”的东西。那么这个“丑”到底藏在哪里呢?我说这个“丑”就藏在一些同学的嘴巴里。前些天,我路过教室门口,竟听到有同学在相互传唱这样的一首打油诗:读书苦啊,读书累,读书还要缴学费,不如参加黑社会,有吃有喝有地位下面还有更难听的,我也不好意思给大家再背下去了。当时,我心情沉重地回到了教室坐在坐位上想,跟同学聊起这样的事情。同学们在笑着告诉我,前些时候还流传过这样一个顺口溜:一年级是小偷二年级是贼,三年级的美女没人追,四年级的帅哥排成对,五年级的情书满天飞,六年级的鸳鸯成双对。
在五千年的历史长河中,中华民族形成了以爱国主义为核心的团结统一、爱好和平、勤劳勇敢、自强不息、厚德载物的伟大民族精神。这种民族精神深深植根于中华民族的优秀传统文化,吸收了人类文明的优秀成果。中华民族五千年的文明史创造了源远流长、博大精深的民族文化,有许多优秀的思想精华永远值得我们发扬。“自强不息”的开拓精神;“厚德载物”的博大胸怀;“富贵不能淫,贫贱不能移,威武不能屈”的浩然正气;“国家兴亡,匹夫有责”的爱国主义精神;“先天下之忧而忧,后天下之乐而乐”的无私奉献精神,“衙斋卧听萧萧竹,疑是民间疾苦声”的忧国忧民的情怀等等,这些凝结了中华民族精神的思想,对中华民族的形成和发展起到了极其重要的作用。
四、范例学习、理解领会例2 某校墙边有甲、乙两根木杆。已知乙木杆的高度为1.5m.(1)某一时刻甲木杆在阳光下的影子如图5-6所示,你能画出此时乙木杆的影子吗?(用线段表示影子)(2)在图中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在(2)的情况下,如果测得甲、乙木杆的影子长分别为1.24m和1m,那么你能求出甲木杆的高度吗?学生画图、 实验、观察、探索。五、随堂练习课本随堂练习 学生观察、画图、合作交流。六、课堂总结本节课通过各种实践活动,促进大家对内容的理解,本课内容,要体会物体在太阳光下形成的不同影子,在操作中观察不 同时刻影子的方向和大小变化特征。在同一时刻,物体的影子与它们的高度成比 例.
三、课堂检测:(一)、判断题(是一无二次方程的在括号内划“√”,不是一元二次方程的,在括号内划“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a为常数) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空题.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次项是__________,一次项是__________,常数项是__________.2.如果方程ax2+5=(x+2)(x-1)是关于x的一元二次方程,则a__________.3.关于x的方程(m-4)x2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m__________时,是一元一次方程。四、学习体会:五、课后作业
(4)议一议:频率与概率有什么区别和联系?随着重复实验次数的不断增加,频率的变化趋势如何?结论:从上面的试验可以看到:当重复实验的次数大量增加时,事件发 生的频率就稳定在相应的概率附近,因此,我们可以通过大量重复实验,用一个事件发生的频率来估计这一事件发生的概率。三、做一做:1.某运动员投篮5次, 投中4次,能否说该运动员投一次篮,投中的概率为4/5?为什么?2.回答下列问题:(1)抽检1000件衬衣,其中不合格的衬衣有2件,由 此估计抽1件衬衣合格的概率是多少?(2)1998年,在美国密歇根州汉诺城市的一个农场里出生了1头白色的小奶牛,据统计,平均出生1千万头牛才会有1头是白色的,由此估计出生一头奶牛为白色的概率为多少?
先让学生自己总结,然后互相交流,得出结论。解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。板书:解一元一次方程一般步骤:1、 去分母-----等式性质22、 去括号----去括号法则3、 移项----等式性质14、 合并同类项----合并同类项法则5、 系数化为1.----等式性质2【课堂练习】练习:解下列一元一次方程解方程: (2) ;思路点拔:(1)去分母所选的乘数应是所有分母的最小公倍数,不应遗漏。(2)用分母的最小公倍数去乘方程的两边时,不要漏掉等号两边不含分母的项。(3)去掉分母后,分数线也同时去掉,分子上的多项式用括号括起来。回顾解以上方程的全过程,表示了一元一次方程解法的一般步骤,通过去分母—去括号—移项—合并同类项—系数化为1等步骤,就可以使一元一次方程逐步向着 =a的形式转化。
判断下面抽样调查选取样本的方法是否合适:(1)检查某啤酒厂即将出厂的啤酒质量情况,先随机抽取若干箱(捆),再在抽取的每箱(捆)中,随机抽取1~2瓶检查;(2)通过网上问卷调查方式,了解百姓对央视春节晚会的评价;(3)调查某市中小学生学习负担的状况,在该市每所小学的每个班级选取一名学生,进行问卷调查;(4)教育部为了调查中小学乱收费情况,调查了某市所有中小学生.解析:本题应看样本是否为简单随机样本,是否具有代表性.解:(1)合适,这是一种随机抽样的方法,样本为简单随机样本.(2)不合适,我国农村人口众多,多数农民是不上网的,所以调查的对象在总体中不具有代表性.(3)不合适,选取的样本中个体太少.(4)不合适,样本虽然足够大,但遗漏了其他城市里的这些群体,应在全国范围内分层选取样本,除了上述原因外,每班的学生全部作为样本是没有必要的.
[例3]、用一个平面去截一个几何体,截面形状有圆、三角形,那么这个几何体可能是_________。四、巩固强化:1、一个正方体的截面不可能是( )A、三角形 B、梯形 C、五边形 D、七边形2、用一个平面去截五棱柱,边数最多的截面是_______形.3*、用一个平面去截几何体,若截面是三角形,这个几何体可能是__________________________________________________.4*、用一个平面截一个几何体,如果截面是圆,你能想象出原来的几何体可能是什么吗?如虹截面是三角形呢?5*、如果用一个平面截一个正方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?6*、几何体中的圆台、棱锥都是课外介绍的,所以我们就在这个栏目里继续为大家介绍这两种几何体的截面.(1)圆台用平面截圆台,截面形状会有_____和_______这两种较特殊图形,截法如下:
小明说:“我姐姐今年的年龄是我去年的年龄的2倍少6,”已知姐姐今年20岁,问小明今年几岁?若取小明今年为x岁,则依据下面的等量关系式列方程:姐姐今年的年龄=小明去年年龄的2倍-6.得2(x-1)-6=20.例5解方程-3(x+1)=9总结:根据乘法分配律和去括号法则(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号)去括号时要注意:1、 不要漏乘括号内的任何一项;2、若括号前面是“-”号,记住去括号后括号内各项都变号.习题训练:解方程,如课本P122练一练1,P113练一练2等.思维拓展,解简单的应用题,如课本P123练一练3或补充一些题,如含小括号、中括号、大括号的方程(这方面课本安排几乎没有,只限浅显问题,教师不必深究)
1、突出问题的应用意识.教师首先用一个学生感兴趣的实际问题引人课题,然后运用算术的方法给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习.2、体现学生的主体意识.本设计中,教师始终把学生放在主体的地位:让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作与交流,得出问题的不同解答方法;让学生对一节课的学习内容、方法、注意点等进行归纳.3、体现学生思维的层次性.教师首先引导学生尝试用算术方法解决间题,然后再逐步引导学生列出含未知数的式子,寻找相等关系列出方程.在寻找相等关系、设未知数及作业的布置等环节中,教师都注意了学生思维的层次性.4、渗透建模的思想.把实际间题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力.
解析:可以根据线段的定义写出所有的线段即可得解;也可以先找出端点的个数,然后利用公式n(n-1)2进行计算.方法一:图中线段有:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE;共4+3+2+1=10条;方法二:共有A、B、C、D、E五个端点,则线段的条数为5×(5-1)2=10条.故选C.方法总结:找线段时要按照一定的顺序做到不重不漏,若利用公式计算时则更加简便准确.【类型四】 线段、射线和直线的应用由郑州到北京的某一次往返列车,运行途中停靠的车站依次是:郑州——开封——商丘——菏泽——聊城——任丘——北京,那么要为这次列车制作的火车票有()A.6种 B.12种C.21种 D.42种解析:从郑州出发要经过6个车站,所以要制作6种车票;从开封出发要经过5个车站,所以要制作5种车票;从商丘出发要经过4个车站,所以要制作4种车票;从菏泽出发要经过3个车站,所以要制作3种车票;从聊城出发要经过2个车站,所以要制作2种车票;从任丘出发要经过1个车站,所以要制作1种车票.再考虑是往返列车,起点与终点不同,则车票不同,乘以2即可.即共需制作的车票数为:2×(6+5+4+3+2+1)=2×21=42种.故选D.
某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,据此列出方程为1.2×0.8x+2×0.9(60-x)=87.故选B.方法总结:解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,最后列方程.三、板书设计教学过程中,通过对多种实际问题情境的分析,感受方程作为刻画现实世界有效模型的意义,通过观察、归纳一元一次方程的概念,使学生在分析实际问题情境的活动中体会数学与现实的密切联系.
方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.
属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。
由②得y=23x+23.在同一直角坐标系中分别作出一次函数y=3x-4和y=23x+23的图象.如右图,由图可知,它们的图象的交点坐标为(2,2).所以方程组3x-y=4,2x-3y=-2的解是x=2,y=2.方法总结:用画图象的方法可以直观地获得问题的结果,但不是很准确.三、板书设计1.二元一次方程组的解是对应的两条直线的交点坐标;2.用图象法解二元一次方程组的步骤:(1)变形:把两个方程化为一次函数的形式;(2)作图:在同一坐标系中作出两个函数的图象;(3)观察图象,找出交点的坐标;(4)写出方程组的解.通过引导学生自主学习探索,进一步揭示了二元一次方程和函数图象之间的对应关系,很自然的得到二元一次方程组的解与两条直线的交点之间的对应关系.进一步培养了学生数形结合的意识,充分提高学生数形结合的能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.
2. 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量x(千克)的一次函数.当所挂物体的质量为1千克时弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的函数关系式,并求当所挂物体的质量为4千克时弹簧的长度.答案: 当x=4是,y= 3. 教材例2的再探索:我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶,如图所示, , 分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.当时间t等于多少分钟时,我边防快艇B能够追赶上A。答案:直线 的解析式: ,直线 的解析式: 15分钟第五环节课堂小结(2分钟,教师引导学生总结)内容:一、函数与方程之间的关系.二、在解决实际问题时从不同角度思考问题,就会得到不一样的方法,从而拓展自己的思维.三、掌握利用二元一次方程组求一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式: ;2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b,进而得到一次函数的表达式.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。