第一点要自信,要热情。自信和热情是一种可贵的人生态度。只要你们抱着极大的热情投入到学习当中,你们就会发现学习真的是一件非常有趣的事情,你们也会发现通过学习,自己会变得越来越聪明,现在请同学们和我一起喊这样一个口号:“我学习,我快乐。我自信,我成功!” 第二点要找到好的学习方法。大家有没有发现,在同一个班里,同一个老师教,可成绩的好坏相差甚远,也不见得成绩好的同学是怎样埋头苦读,下课照样和大家一起玩,你学什么,他也学什么,可是成绩就是比你好。这是为什么呢?因为这里面有个重要的秘密,那就是学习方法。勤学不如巧学,那如何做到事半功倍呢?首先要学会预习。其次要学会听课。最后要学会复习和做作业。
端午节,又称端阳节、女儿节、午日节、五月节、艾节、端五、重五、夏节、诗人节等。过端午节,是中国人两千多年来的传统习惯。包括端午节在内的中华传统节日还有春节、清明节、重阳节、中秋节,这些都是我们的节日。它凝聚着我们的民族精神和民族情感,是中华民族文化遗产的重要组部分,是展示和传播优秀民族文化的重要载体,也是进行爱国主义教育的有效形式。端午节作为我国人民对以爱国诗人屈原等为代表的爱国先驱表达缅怀之情、崇敬之意的传统节日,以其丰富的文化内涵和周期性、民族性、群众性特点,深深地融入人们的日常生活和精神世界,成为人们抒发爱国情感,弘扬民族精神的重要节日。
这次疫情一定会以摧枯拉朽之势,让本应该多年才能完成的行业性的、系统性的变革在短时间内就席卷而来,将会是一次全面的大体检,对于我们每一个人,对于XX,均是如此。 众擎易举共奋进,寒以成物春不远。在经济变革和升级的过程中,在这个大体检的过程中,我希望大家牢记:所有的变化,不会因为任何事件的发生而停滞,相反,只会加速到来。所以,新的一年,对于XX集团和每一位同事来说,都是一个新的起航、一个新的挑战,同时也将是一个重要的颠覆点。
项目自成立以来,在集团、公司的领导下始终坚持“安全第一,预防为主,综合治理的'”安全生产方针,深入开展以中建《施工现场安全防护标准化图册》和《XXX建筑工程施工现场扬尘污染防治实施细则》为指导,结合项目实际,绿色施工,打造安全文明标准化工地:施工现场安装可拆卸制式围墙,钢筋场、木工加工区、塔吊基础围护、材料堆场等采用1.8米格栅式工具化防护栏;施工区域分割、基坑周边防护、结构临边防护采用1.2米网片式工具化防护栏;现场主安全通道、建筑物出入口、施工电梯出入口及其它安全通道采用装配式安全防护棚。茶水间、休息室、吸烟室设置USB充电口及声控节能灯。现场施工对易产生扬尘的污染区采取封闭式作业,设置自动喷淋洒水系统、全自动洗车台,配备洒水车、雾炮机、PM10检测仪、现场视频监控系统等,对裸露土方采用了洒水、硬化、绿化、覆盖等有效抑尘措施。保护和改善施工环境和生态环境。
一、优化营商环境的特殊意义随着经济全球化不断推进,资源在全球、全国范围内进行配置的趋势越来越明显,人才、技术、资金、项目跨区域流动日益活跃,营商环境对一个国家或区域的发展越来越重要。优化营商环境是坚持和完善中国特色社会主义制度,建立更加完善的市场经济体制,完善治理体系和提高治理效能的需要。在中国特色社会主义进入新时代,社会主要矛盾发生变化的背景下,为应对世界百年未有之大变局为实现中华民族伟大复兴,我们必须坚持和完善中国特色社会主义制度、推进国家治理体系和治理能力现代化。中共中央、国务院发布的《关于新时代加快完善社会主义市场经济体制的意见》强调“在更高起点、更高层次、更高目标上推进经济体制改革及其他各方面体制改革,构建更加系统完备、更加成熟定型的高水平社会主义市场经济体制”。按照这一要求,我们的营商环境还存在不少问题。必须处理好政府与市场关系、政府与社会关系、市场与社会关系,在关键性基础性重大改革上有突破有创新,解放、创造和保护先进的生产力,重点完善产权制度和要素市场化配置,创新政府管理和服务方式,完善市场经济法律制度,以高水平的开放推动深层次市场化改革,实现“产权有效激励、要素自由流动、价格反应灵活、竞争公平有序、企业优胜劣汰”的要求。这是建设一个好的市场经济体制,体现制度优势,完善国家治理体系,增强治理能力,提高治理效能的迫切需要。
咨询引领顶层设计能力持续强化。为国家电网公司互联网部、发策部、设备部、营销部、基建部、审计部、财务部、企协等部门提供技术支持服务,并参与电网数字化咨询与顶层设计,20**年公司获得国网总部技术服务费合同额3270万元,连续两年在集团总部技术服务费中名列前茅。稳步开展企业中台能力提升、总部能源大数据中心、新兴产业升级、新业务新业态模式研究、项目中台、网上电网、PMIS3.0及电网资源中台、数字化审计三期等顶层设计,开展信息调运检体系设计运营实施等工作,电网数字化咨询设计能力持续强化。承担国网安徽电力信息化架构规划与设计、国网福建电力信息系统架构中台化设计和移动应用顶层设计、国网江苏电力基于数据中台的多源数据综合应用设计、国网山东电力智慧物联体系典型场景设计等一批重点项目,按照国家电网公司“十四五”数字化规划要求,有力支撑各网省公司开展电网数字化转型升级。
我是___班的___。今天,我非常荣幸够代表全体新生在开学典礼上发言。昨天我们带着父母的叮咛,师长的关切,满怀好奇和憧憬,带着依然稚嫩的笑脸走进了校园。作为新生,我们在感受着这新鲜的同时,也更快的融入了这个温暖而富有亲和力的大家庭中。从踏进学校的那一刻起,所有的疲倦和迷茫,都被抛之脑后,所有离家的顾虑全部一扫而光。老师们的亲切关怀,同学们的热情帮助,都暖暖地包容着我们。请允许我借此机会,向老师及同学们表示最崇高的敬意和感谢! 同学们,我们来到学校都应该给自己树立一个的目标,我认为无论树立的是什么目标,做一名优秀的学生是最基本的。当你早上背着书包迎着朝阳开始一天的学习时,要抬头挺胸,精神振作,信心百倍,你的心里要装上一个伟大的决心;当你在放学回家的路上,你要摸摸自己的书包,问问自己今天你又学到了什么?有没有白白浪费一天的光阴,距离伟大的理想、美好的愿望是不是又近了一步?
在这阳光明媚、万里无云的日子里,我们迎来了本学期第一次家长会。能作为学生代表上台发言,我感到十分荣幸。同时我代表全体同学,向你们表示热烈欢迎! 我叫xx,是一个身高一米五六的小伙子。本学期身为班长的我,能够以身作则,带领好我的这一批班干部,管理好班级一周各方面的常规。我的学习成绩不错,每次考试都能在90分以上;九十五分对于我来说也是“常客”。由于取得了这一点点小成绩,有许多同学总会和我开玩笑:“你的成绩这么好,有没有什么‘秘密’和我们分享分享?”这时,我总会微微一笑道:“其实没有什么‘秘密’可谈,我在家里花的时间和你们是一样的!”我觉得,之所以我的成绩这么好,主要在于我上课能够认真听讲。 虽然我在班上坐在倒数第二排,但是我的眼睛总是能跟着老师转,思维能跟着老师走。只要上课能认真听讲,课下的作业就可以迎刃而解了。由于我上课能认真听讲,在家里,作业多的时候,一个小时就可以写完了;作业少的时候几十分钟就可以解决了。剩下的时间,我总会捧起一本好书,细细品读其中的精华,或者下楼玩一小会儿,放松放松身心。我觉得,新世纪的少年要德、智、体、美、劳、各方面全面发展。我在这方面就挺不错的。我不仅在校内表现出色,在校外,英语、奥数、象棋、作文等都是我的强项。特别是象棋,我曾经一路过关斩将,取得了全省第三名的好成绩。 当然,取得了这么多好成绩,我觉得归功于三位主科老师以及家长们。三位主科老师在学校里教会我学习,并告诉我人生哲理;家长们在家里辅导我学习,督促我养成好习惯,改正坏习惯。他们都功不可没。 “路漫漫其修远兮,吾将上下而求索”。今后的日子还很漫长,我一定要加倍努力,不辜负老师家长们对我的期望!谢谢大家!
二、学情分析:学生目前对形变和弹力有一定的感性认识但是不够深入;知道支持力、压力都是弹力,但是不能够概括产生的原因。理性思维还没有达到一定的层次,要想理解弹力这一抽象概念还有一定困难。因此我采取引导、启发的教学方式。
一、教学目标(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.(三)学科渗透点通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.二、教材分析1.重点:抛物线的定义和标准方程.2.难点:抛物线的标准方程的推导.三、活动设计提问、回顾、实验、讲解、板演、归纳表格.四、教学过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.首先,利用篮球和排球的运动轨迹给出抛物线的实际意义,再利用太阳灶和抛物线型的桥说明抛物线的实际用途。
教学目的:理解并熟练掌握正态分布的密度函数、分布函数、数字特征及线性性质。教学重点:正态分布的密度函数和分布函数。教学难点:正态分布密度曲线的特征及正态分布的线性性质。教学学时:2学时教学过程:第四章 正态分布§4.1 正态分布的概率密度与分布函数在讨论正态分布之前,我们先计算积分。首先计算。因为(利用极坐标计算)所以。记,则利用定积分的换元法有因为,所以它可以作为某个连续随机变量的概率密度函数。定义 如果连续随机变量的概率密度为则称随机变量服从正态分布,记作,其中是正态分布的参数。正态分布也称为高斯(Gauss)分布。
教学准备 1. 教学目标 知识与技能掌握双曲线的定义,掌握双曲线的四种标准方程形式及其对应的焦点、准线.过程与方法掌握对双曲线标准方程的推导,进一步理解求曲线方程的方法——坐标法.通过本节课的学习,提高学生观察、类比、分析和概括的能力.情感、态度与价值观通过本节的学习,体验研究解析几何的基本思想,感受圆锥曲线在刻画现实和解决实际问题中的作用,进一步体会数形结合的思想.2. 教学重点/难点 教学重点双曲线的定义及焦点及双曲线标准方程.教学难点在推导双曲线标准方程的过程中,如何选择适当的坐标系. 3. 教学用具 多媒体4. 标签
本人所教的两个班级学生普遍存在着数学科基础知识较为薄弱,计算能力较差,综合能力不强,对数学学习有一定的困难。在课堂上的主体作用的体现不是太充分,但是他们能意识到自己的不足,对数学课的学习兴趣高,积极性强。 学生在学习交往上表现为个别化学习,课堂上较为依赖老师的引导。学生的群体性小组交流能力与协同讨论学习的能力不强,对学习资源和知识信息的获取、加工、处理和综合的能力较低。在教学中尽量分析细致,减少跨度较大的环节,对重要的推导过程采用板书方式逐步进行,力求让绝大多数学生接受。 1.理解椭圆标准方程的推导;掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标. 2.通过椭圆图形的研究和标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用。 1.让学生经历椭圆标准方程的推导过程,进一步掌握求曲线方程的一般方法,体会数形结合等数学思想;培养学生运用类比、联想等方法提出问题. 2.培养学生运用数形结合的思想,进一步掌握利用方程研究曲线的基本方法,通过与椭圆几何性质的对比来提高学生联想、类比、归纳的能力,解决一些实际问题。 1.通过具体的情境感知研究椭圆标准方程的必要性和实际意义;体会数学的对称美、简洁美,培养学生的审美情趣,形成学习数学知识的积极态度. 2.进一步理解并掌握代数知识在解析几何运算中的作用,提高解方程组和计算能力,通过“数”研究“形”,说明“数”与“形”存在矛盾的统一体中,通过“数”的变化研究“形”的本质。帮助学生建立勇于探索创新的精神和克服困难的信心。
4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。