教学过程一、组织教学师生问好!二、导入新课观察鳟鱼图片,由图片导入课题。师:同学们请看图片,有没有同学知道是什么鱼?(鳟鱼,很有价值的垂钓鱼,可食用,全世界只有十多种。)我们今天欣赏的音乐与这种鱼有关,是一首以鳟鱼来命名的音乐。有同学可能会说:“谁会去描写这种看起来并不漂亮甚至还有些凶的鱼呢?”优秀的艺术家,任何素材都可以来来创作,我们现在开始学习《鳟鱼》。三、新课教学1、认识舒伯特。舒伯特(1797年1月31日-1828年11月19日),奥地利作曲家,出生于维也纳。自幼随父兄学习小提琴和钢琴。舒伯特的一生是在贫困中度过的,艰难的生活使他过早地离开人世。然而,舒伯特却为人类留下了大量的不朽名作,被称为“歌曲之王”。在短短31年的生命中,创作了600多首歌曲,18部歌剧、歌唱剧和配剧音乐,10部交响曲,19首弦乐四重奏,22首钢琴奏鸣曲,4首小提琴奏鸣曲以及许多其他作品。
教学过程:一、导入同学们,你们知道“甲壳虫”吗?The Beatles(披头士,又译甲壳虫乐队)毫无疑问是流行音乐界历史上最伟大,最有影响力,最为成功的乐队。The Beatles对于流行音乐的革命性的发展与影响力无人可出其右,对于世界范围内摇滚的发展做出了非常巨大的贡献,影响了自60年代以后的数代摇滚乐队的音乐和思想,直接影响了摇滚乐的变革和发展,在英国,披头士乐队更是影响了60年代至今几乎每一支乐队的形成和发展。而乐队中四名伟大的音乐家,特别是约翰列侬和保罗麦卡特尼,对于世界各个角落的后辈摇滚歌手及音乐创作者们的影响持续至今。二、新课教学1、播放《昨日》初次聆听,谈谈你的感受。2、简介歌曲来源及故事背景歌曲《Yesterday》创作过程据麦卡特尼忆述,歌曲旋律的灵感来自梦中,一觉醒来后他立即走到钢琴前弹奏出来,并以录音机记录下来。歌曲一经发行,就引起了强烈的反响,优美的旋律,隽永的歌词,刻画出每个人心灵深处那失落在时间中的影子。不论文化背景、社会地位、审美取向,甚至是否爱好音乐,几乎人人都会被这首歌打动,它真正做到了雅俗共赏。
教材分析:1、作品分析:《鳟鱼》是舒伯特1817年根据诗人舒巴尔特的浪漫诗创作的一首艺术歌曲。它以叙述式的手法向人们揭示了善良和单纯往往被虚诈和邪恶所害,借对小鳟鱼不幸遭遇的同情,抒发了作者对自由的向往和对迫害者的憎恶,是一首寓意深刻的作品。2、作者介绍:舒伯特(1797---1828)奥地利作曲家,欧洲浪漫乐派的代表人物之一。由于生活贫困又不愿依附于权贵,在他的作品中常常流露出苦闷和压抑的情绪,年仅31岁就离开了人世。舒伯特的创作体裁非常广泛,包括歌剧、交响乐、重奏乐、奏鸣曲等,其中歌曲是舒伯特有特殊成就的创作领域,被誉为“歌曲之王”。3、作品结构图(略)4、重奏乐:又称之为室内乐,17世纪起源于意大利。近代室内乐指每一声部都由一件乐器演奏的小型合奏曲。按声部人数的多少可分为“二重奏”、“三重奏”等,也可按演奏的乐器分为“铜管重奏”、“木管重奏”等,其中最常见的形式是弦乐四重奏,分别由两把小提琴、一把中提琴和一把大提琴组成。5、变奏曲式:由代表基本乐思的音乐主题及若干变奏所构成的曲式,称为变奏曲式,变奏中最初的呈现并作为以后变奏所依据的原型部分,称为变奏的主题,其后的各次变奏依次称为变奏一、变奏二、变奏三……结构图式为A+A¹+A²+A³……6、常见变奏手法:改变演奏、演唱方式:加入各种装饰音;改变音色、速度、力度、节奏、调号等。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
(2)伟大的意义:这些精神文明创建活动,是人民群众“移风易俗”、改造社会的伟大创造,也是人民群众自我教育、自我提高的有效途径。各具特色的精神文明创建活动,使人们在自觉参与的过程中思想感情得到熏陶,思想觉悟得到启发,精神生活得到充实,道德意识得到增强,道德境界得到升华。这对整个中华民族的精神面貌,正在产生不可估量的积极影响。◇点拨:“相关链接”描述了青年志愿者活动,引导学生感悟其精神,升华道德境界,增强参与意识。(3)必然的选择:投身于社会主义精神文明建设的伟大实践,做新时期中国先进文化的传播者和建设者,是当代中国青年成长、成才的必然选择。◇拓展延伸:在群众性精神文明创建活动中涌现出的先进人物和英雄模范,像孔繁森、张海迪、徐洪刚、韩素云、李国安、徐虎、李素丽等,在全社会起到了良好的示范作用;提出的一些响亮口号,如“从我做起,从现在做起”“岗位学雷锋,行业树新风”“单位做个好职工,社会做个好公民,家庭做个好成员”等,不断激励着人们。
师:三亚目前正在强调打造文化产业,如举办文体大赛,提升三亚知名度.如今"美丽三亚,浪漫天涯"已成为三亚一张旅游名片,以文化产业的发展带动经济旅游的发展,大家结合今天的三亚文化产业发展谈谈发展文化事业和文化产业的作用.学生:回答(略)。师:要支持文化产业发展,增强我国文化产业的整体实力和竞争力.? 3. 亿万人民的创建活动(板书) (1).人民群众是精神文明创建活动的主体。学生朗读课文P103页,理解亿万人民是精神文明创建活动的主体.师:发展先进文化,本质上是一个立足于建设中国特设社会主义伟大实践而不断进行文化创造的过程,也就是社会主义精神文明的创建过程.(2).人民群众参与精神文明创建活动的意义.师:人民群众在社会主义精神文明建设活动中,创造了丰富多彩的形式,在参与的过程中思想感情得到熏陶,思想觉悟得到启发,精神生活得到充实,道德意识得到增强,道德境界得到升华.这对整个中华民族的精神面貌,正在产生不可估量的积极影响.
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 9.2 直线与直线、直线与平面、平面与平面平行的判定与性质 *创设情境 兴趣导入 观察图9?13所示的正方体,可以发现:棱与所在的直线,既不相交又不平行,它们不同在任何一个平面内. 图9?13 观察教室中的物体,你能否抽象出这种位置关系的两条直线? 介绍 质疑 引导 分析 了解 思考 启发 学生思考 0 2*动脑思考 探索新知 在同一个平面内的直线,叫做共面直线,平行或相交的两条直线都是共面直线.不同在任何一个平面内的两条直线叫做异面直线.图9-13所示的正方体中,直线与直线就是两条异面直线. 这样,空间两条直线就有三种位置关系:平行、相交、异面. 将两支铅笔平放到桌面上(如图9?14),抬起一支铅笔的一端(如D端),发现此时两支铅笔所在的直线异面. 桌子 B A C D 两支铅笔 图9 ?14(请画出实物图) 受实验的启发,我们可以利用平面做衬托,画出表示两条异面直线的图形(如图9 ?15). (1) (2) 图9?15 利用铅笔和书本,演示图9?15(2)的异面直线位置关系. 讲解 说明 引领 分析 仔细 分析 关键 语句 思考 理解 记忆 带领 学生 分析 5
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 9.3 直线与直线、直线与平面、平面与平面所成的角 *创设情境 兴趣导入 在图9?30所示的长方体中,直线和直线是异面直线,度量和,发现它们是相等的. 如果在直线上任选一点P,过点P分别作与直线和直线平行的直线,那么它们所成的角是否与相等? 图9?30 介绍 质疑 引导 分析 了解 思考 启发 学生思考 0 5*动脑思考 探索新知 我们知道,两条相交直线的夹角是这两条直线相交所成的最小的正角. 经过空间任意一点分别作与两条异面直线平行的直线,这两条相交直线的夹角叫做两条异面直线所成的角. 如图9?31(1)所示,∥、∥,则与的夹角就是异面直线与所成的角.为了简便,经常取一条直线与过另一条直线的平面的交点作为点(如图9?31(2)) (1) 图9-31(2) 讲解 说明 引领 分析 仔细 分析 关键 语句 思考 理解 记忆 带领 学生 分析 12*巩固知识 典型例题 例1 如图9?32所示的长方体中,,求下列异面直线所成的角的度数: (1) 与; (2) 与 . 解 (1)因为 ∥,所以为异面直线与所成的角.即所求角为. (2)因为∥,所以为异面直线与所成的角. 在直角△中 ,, 所以 , 即所求的角为. 说明 强调 引领 讲解 说明 观察 思考 主动 求解 通过例题进一步领会 17
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 红白1 (白1,白1) (白2,白1) (红,白1)白2 (白1,白2) (白2,白2) (红,白2)红 (白1,红) (白2,红) (红,红)由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
一、班主任开场白:“路漫漫其修远兮,吾将上下而求索。”中华上下五千年,从古代的四大发明,到现在的神舟五号载人飞船顺利返航;从“小米加步枪”到两弹一星;从林则徐虎门销烟到甲午海战到今日的保钓行动;从“东亚病夫”到奥运金牌世界第二。无不深深地打动着我们每一位中华儿女的心,使我们从内心深处体会到了中华的温暖,祖国的伟大。我们为中华民族而欢呼,为祖国感到无比的自豪。二、班长:作为中华儿女的我们,作为新世纪的一代,现在我们坐在这里,请展开我们思想的翅膀,飞进我们历史的长河。现在请第一小组代表上台发言。三、第一小组代表:论及中国近代史开端的鸦片战争,就不能不提及林则徐的伟大历史影响。各国史学界浩繁的论著中,都对林则徐的历史地位作过应有的评价。就连当时作为敌国的英国,也在伦敦蜡像馆树立过林则徐的蜡像。原国际联盟(联合国的前身)曾将林则徐虎门销烟的开始日“6月3日”定作“国际禁烟日”加以纪念。因为林则徐虎门销烟的数量之大、时间之长,在世界史上都是空前的,而其影响之深远,更是前无古人的。
2、学习包装和装饰礼物。 3、体验赠送和接受礼物的乐趣。 活动准备:幼儿用书、挂图、用纸包着的神秘礼物;彩色胶带、色纸、画笔、剪刀等 活动过程: 1、与幼儿一同欣赏挂图`《我喜欢......我会......》,结合幼儿用书中的内容,请幼儿想想自己对喜欢的人会做什么,与图中是否一样。 2、告诉幼儿,老师今天收到一个神秘礼物。向幼儿展示经过包装装饰的神秘礼物,请幼儿自由猜测里面是什么。
3.作者为什么不直接描写人们看见东西呢?请同学们找出其中的细节描写,并说明有什么表达效果。答:侧面烘托,正是作者高明之处,这也是许多佳作常用之法。细节描写往往会成为事情的切入点和突破口,一篇佳作往往离不开一些细节描写,本文也不例外,有些细节描写耐人寻味,如:“德国人撤退时炸毁的布热金卡毒气室和焚尸炉废墟上,雏菊花在怒放。”“这是一个二十多岁的姑娘,长得丰满,可爱,皮肤细白,金发碧眼。她在温和地微笑着,似乎是为着一个美好而又隐秘的梦想而微笑。”4.句子赏析:“对另外一些人来说,这样一个事实使他们终生难忘:在德国人撤退时炸毁的布热金卡毒气室和焚尸炉废墟上,雏菊花在怒放。”明确:一边是戕害生命的毒气室和焚尸炉,一边是生机勃勃的生命,两种反差极大的事物摆在一起。表达了作者对纳粹的讽刺:纳粹的残暴终归阻止不了生命的进程。同时也表达了作者的控诉:生命的绽放是人世间最美好的事情,对生命的戕害是最恶劣的罪行。
1.悬念法悬念法又称关子。它是作者为了激发那种“紧张与期待的心理活动”,在行文中有意采取的一种积极而有效的手段。这种手段包括“设悬”和“解悬”两方面。所谓 “设悬”就是设置悬念,即在情节发生发展的关键时刻或人物命运攸关的重要关头,叙述戛然而止,转叙他事。从而引起读者强烈的寻根问底的兴趣。所谓“解悬” 也叫“释悬”,就是指在情节发展的特定阶段,通过矛盾的解决,揭示事情原委和人物命运的结局,使读者的期待心理得以满足。如《驿路梨花》,当人们正为露宿而发愁时出现了一间神秘的小屋,小屋的主人是谁呢?猜想间,有人来了,但也不是屋子主人,那小屋子的主人是谁呢?终于知道了小屋是解放军盖的,但为什么要盖这间小屋呢?这样“设悬——释悬——带出新悬念”,环环相扣、层层递进,使文章韵味无穷。
①阐发话题式:就是用简练的语言对所给话题材料加以概括和浓缩,并找到一个最佳切入点加以深层次阐述。吉林一考生的满分作文《漫谈“感情”“认知”》的题记是:“同是对‘修墙’‘防盗’的预见,却产生‘聪明’或‘被怀疑’的结果。‘感情’竟能如此地左右着‘认知’,心的小舟啊,在文化的河流中求索。”这个题记通过对材料的简单解释,将“感情”与“认知”二者的关系诠释得非常明白,也点明了作者的态度和议论的中心。②诠释题目式:所拟题目一般都具有深刻性特点,运用题记形式对题目进行巧妙而又全面的诠释。云南一考生的满分作文《与你同行》的题记是:“他们一路同行,一个汲着水,一个负着火,形影相随。在他们携手共进时,就产生了智慧。”这个题记形象而深刻地对“与你同行”这个题目进行了解释,言简意赅,表明了考生对感情和理智关系的认识。
活动目标:1.让幼儿根据小动物们的要求,设计出有趣的房子。2.培养幼儿的想像力、创造力。活动准备:1.和幼儿人数相等的16开白纸、马克笔。2.小兔、小松鼠、蝴蝶、大象等图片。活动过程:一.导入活动,激起幼儿兴趣,引出课题“房子”1.老师:小朋友,今天咱们班来了几位小客人,你们看,是谁? 幼儿:小兔、小松鼠、蝴蝶、大象。
活动目标: 1.让幼儿根据小动物们的要求,设计出有趣的房子。 2.培养幼儿的想像力、创造力。 活动准备: 1.和幼儿人数相等的16开白纸、马克笔。 2.小兔、小松鼠、蝴蝶、大象等图片。 活动过程: 一.导入活动,激起幼儿兴趣,引出课题“房子” 1.老师:小朋友,今天咱们班来了几位小客人,你们看,是谁? 幼儿:小兔、小松鼠、蝴蝶、大象。 2.老师:咦,你们到我们班来有什么事吗? 小兔、小松鼠、蝴蝶、大象一起说:“前几天又是刮风又是下雨,我们的房子坏了,想请小朋友帮助我们设计一幢漂亮的新房子,你们愿不意愿意啊?
因为反比例函数的图象经过点A(1.5,400),所以有k=600.所以反比例函数的关系式为p=600S(S>0);(2)当S=0.2时,p=6000.2=3000,即压强是3000Pa;(3)由题意知600S≤6000,所以S≥0.1,即木板面积至少要有0.1m2.方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p= ,当压力F一定时,p与S成反比例.另外,利用反比例函数的知识解决实际问题时,要善于发现实际问题中变量之间的关系,从而进一步建立反比例函数模型.三、板书设计反比例函数的应用实际问题与反比例函数反比例函数与其他学科知识的综合经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程,提高运用代数方法解决问题的能力,体会数学与现实生活的紧密联系,增强应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.
补充题:为了预防“非典”,某学校对教室采用药熏消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如右图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范围为 ;药物燃烧后,y关于x的函数关系式为 .(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)y= x, 010,即空气中的含药量不低于3毫克/m3的持续时间为12分钟,大于10分钟的有效消毒时间.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。