1)请幼儿在图中找出两两相互关联的事物,用笔把他们连在一起,并说明为什么这样做。教师引导幼儿说出“××与××有联系,因为、、、、、、”(如:蜜蜂与花朵有联系,因为蜜蜂能在花朵上采花蜜。)进一步尝试:玩法(2)教师出示一件实物或图片,请幼儿观察并讲述他与什么事物有联系,为什么。(如:国旗与国家有联系,国旗是国家的象征)玩法
活动目标:1、认识“>”和“<”,理解不等式的含义,理解大小的相对性。。2、学习把不等式转变为等式。3、培养幼儿思维的灵活性和可逆性,锻炼幼儿运用数学知识解决实际问题的能力。 活动分析: 重点认识“>”和“<”,理解不等式的含义,掌握相等与不相等的转化;难点是掌握“>”和“<”的方向。 活动准备:1、7只蜜蜂,5只蝴蝶的图片。 2、4朵红花、六朵黄花的图片。3、数字卡片“7”、“5”、“4”、“6”以及“>”、“<”、“=”卡片若干。4、数字头饰两套,小猴子头饰若干。5、数字小兔图一张,有关数字卡若干。6、数字卡10张(装入猫头包内),铃鼓一个,磁带、录音机等。
实录: 今天区别“1和许多”是第二次非式活动,活动前,我给小朋友提出了“今天请大家去找一找上次没玩过的玩具玩一玩。活动开始了,小朋友们开始寻找自己上次没玩过的玩具。有的拿了听一听、有的拿了放一放、还有的拿了插管子。徐炜韬选了摆一摆的玩具,看到一张纸上贴着两张图片,一张是一只萝卜,另一张是许多的气球,徐炜韬开始对着这两张图片看了又看,接着他就点着萝卜和气球说出其名称,讲了一会儿,他看见盘子里有许多卡片,看了看,他拿了一条鱼点数了起来,“1”,点好后,就放在一边,,这时他又拿了一张树叶的卡片,这下他发现不是“1”而是有“许多”树叶,他马上伸出手指点数了起来,一边数,一边念着“1、2、3、4、5、6、7数到最后他发现自己有点数不清,于是他放在了一边。
活动目标: 1、认识“>”和“<”,理解不等式的含义,理解大小的相对性。。 2、学习把不等式转变为等式。 3、培养幼儿思维的灵活性和可逆性,锻炼幼儿运用数学知识解决实际 问题的能力。活动准备: 1、7只蜜蜂,5只蝴蝶的图片。 2、4朵红花、六朵黄花的图片。 3、数字卡片“7”、“5”、“4”、“6”以及“>”、“<”、“=”卡片若干。 4、数字头饰两套,小猴子头饰若干。 5、数字小兔图一张,有关数字卡若干。 6、数字卡10张(装入猫头包内),铃鼓一个,磁带、录音机等。活动过程: 一、导入课题:认识“>”和“<” 1、问:“小朋友,现在是什么季节?”(春季)“春天来了,蜜蜂蝴蝶飞呀飞呀,飞到我们幼儿园里来了,大家看一下,飞来了几只蜜蜂?几只蝴蝶?”教师展示蜜蜂和蝴蝶的图片,幼儿说出数量,教师贴上相应的数字卡。 问:“蜜蜂和蝴蝶比,谁多?谁少?”“那么,7和5相比,哪个数字大?哪个数字小?” 师:“我们可以在7和5之间放一个符号,让人一看就知道哪边的数字大,哪边的数字小。我们以前学过‘=’号,能放‘=’号吗?”启发引导幼儿,引出“>”,重点引导幼儿观察大于号像张着嘴巴对着大数笑,大于号表示前边的数比后边的数大,初步理解大于号的含义,说出“7”大于“5”。
活动目标: 1、尝试在故事情景中大胆、清楚地表述自己的想法,提高观察、分析问题及解决问题的能力。 2、感受到齐心协力能更好地做好一件事。 活动重点:尝试在故事情景中大胆、清楚地表述自己的想法,提高观察、分析问题及解决问题的能力。 活动难点:感受到齐心协力能更好地做好一件事。 活动准备:1、孩子们已经有了一些和尚的衣食住行方面的知识经验。 2、丰富幼儿看图说话的经验。 3、会唱歌曲《三个和尚》。 4、《三个和尚》故事片、课件、磁带。
一、项目内容1. 甲方委托乙方开发的软件《_苹果系统APP,安卓系统APP,网络平台__》(以下简称“本三个软件”) 在安卓,苹果,PC环境下运行的软件,本三个软件需求(以下简称“需求”)双方协商确定。2.本合同APP和网络平台应用开发的栏目架构及相关功能开发细节由《APP和网络平台开发需求表》载明。二、合同价款和付款方式1.本合同总价款包括乙方相关的税费及软件开发期间办理相关手续的所有费用。该价款为固定包干价,除上述款项外,甲方无需支付任何其它款项。2.付款方式:前期不要源码的甲方总支付乙方费用是 27500元,预付定金为10000元,软件和平台做好交付可以使用付清前期不要源码的费用的余额17500(留3000元质保金),即14500元后期甲方要回乙方源码,乙方要另加收甲方27500元费用,并付清3000元的质保金三、开发进度自合同签订日起,甲方把钥匙交给乙方匹配乙方将在_____30_______个工作日内完成客户端开发,此时间并包括审核和测试时间。 乙方的工作时间从本合同签订之日的次日起开始计算。
2.作者在第四节说“:我还有什么话可说呢?到第五节又说“我还有要说的话”。各是什么意思?(提示:无话可说是因为敌人暴力和无耻谰言令人震惊、愤怒说不出话;还有要说的话是作者要揭露敌人。)3.“这是怎样的一个惊心动魄的伟大呵”一句中,“这”字指代什么内容?下面的伟绩和武功如何理解?(提示:“这”指上文的“三个女子从容地转辗于文明人所发明的枪弹的攒射中”。“伟绩”和“武功”用了反语的修辞手法,用了“互文”的写作手法两句所讲的内容一样,这句话讽刺了中外反对者沾沾自喜与自己的暴力的丑恶嘴脸。)4.作者用煤的形成类比什么?作者对徒手请愿的态度如何?(提示:类比请愿的收效不大,作者不赞同徒手请愿方式!)5.作者在此引用陶渊明的诗,用意何在?指名介绍介绍一下陶渊明?(提示:作者认为尽管请愿收效甚微,但对社会还是有一定影响的。勇士们的鲜血不会白流。
本章是第三章第一节的开端,学生在第二节已经学习了元素的组成和一些生物大分子,本节课内容是学会使用显微镜,这是生物学习过程中最为重要的一种手段之一。对于今后的实验学习有着极其重要的作用。 学生中大部分同学在初中阶段都有接触过光学显微镜,所以在学习理论知识的时候能够顺利的进行,但因为学校的条件有限,不能保证同学们进行显微镜的实验,本节课结合学生情况和实际情况,采用图片和模型展示的方法进行。 知识与能力 1、概述细胞学说建立的过程。 2、概述细胞学说的内容和意义。 3、学习制作临时玻片标本,使用显微镜和绘图的能。
重点分析:本节课的重点是离散型随机变量的概率分布,难点是理解离散型随机变量的概念. 离散型随机变量 突破难点的方法: 函数的自变量 随机变量 连续型随机变量 函数可以列表 X123456p 2 4 6 8 10 12
新知探究前面我们研究了两类变化率问题:一类是物理学中的问题,涉及平均速度和瞬时速度;另一类是几何学中的问题,涉及割线斜率和切线斜率。这两类问题来自不同的学科领域,但在解决问题时,都采用了由“平均变化率”逼近“瞬时变化率”的思想方法;问题的答案也是一样的表示形式。下面我们用上述思想方法研究更一般的问题。探究1: 对于函数y=f(x) ,设自变量x从x_0变化到x_0+ ?x ,相应地,函数值y就从f(x_0)变化到f(〖x+x〗_0) 。这时, x的变化量为?x,y的变化量为?y=f(x_0+?x)-f(x_0)我们把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函数从x_0到x_0+?x的平均变化率。1.导数的概念如果当Δx→0时,平均变化率ΔyΔx无限趋近于一个确定的值,即ΔyΔx有极限,则称y=f (x)在x=x0处____,并把这个________叫做y=f (x)在x=x0处的导数(也称为__________),记作f ′(x0)或________,即
4.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.(3). 在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解] (1)X可取0,1,2,3.X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X可取3,4,5.X=3表示取出的球编号为1,2,3;X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
第一,知行合一,切实提高绿色低碳转型的思想自觉和行动自觉。要有全面、系统、深刻认识“30·60”内涵的思想自觉。与发达国家相比,我国仍处于快速工业化、城镇化进程,经济将在较长一段时期保持中高速增长,人均能源需求尚有较大上升空间,未来碳减排压力较大。据国际组织、科研机构测算,我国碳排放峰值将超过XXX亿吨,而XX碳排放峰值为XX亿吨,XX约为XX亿吨。我国从碳达峰到碳中和仅有XX年时间,远低于欧XX家XX-XX年的时间。“碳达峰、碳中和”不是要简单以牺牲经济增长速度、国民财富积累和人民生活水平提高为代价,而是要实现碳减排约束下全面、协调、可持续的高质量发展,需要充分、理性、智慧地平衡好生态文明建设与经济社会发展的关系。未来几十年,绿色低碳转型将嵌入所有经济活动的内核,成为投资、生产、消费和流通等决策的核心逻辑。
一、我市“厕所革命”和粪污治理基本情况20**年以来,扎兰屯市为农户改造厕所13851户,全部为三格式化粪池水冲卫生厕所,涉及12个乡镇1个办事处。车辆分配时,根据已改厕所和20**年拟任务数,结合市机关服务中心、农科局实地调研后,拟急需采购30台。二、实地调研考察基本情况厕改大多采用了“三格式”化粪池厕所的方式,这种厕所有结构简单易施工、成本较低、无害化效果好等优点。由政府免费提供“三格式”化粪池,村内需自配小型抽粪设施,抽取已无害化处理过的粪液,作为有机肥料还田利用。“三格式”化粪池厕所与传统旱厕相比有无异味、少蚊蝇、使用方便、无污染等诸多优点,适合在广大乡村大力推广。
(一)巡察准备不够充分。一是部门提供线索针对性不强。巡察进驻前,县委巡察办通过函的形式,分别征求县级相关部门关于被巡察单位的有关问题反映情况,但从目前情况看,大部分单位提供的问题线索针对性不强,基本以无意见形式复函。二是巡察组了解被巡察单位情况不充分。进驻前巡察组与被巡察单位沟通联系不够,没有深入了解被巡察单位的实际情况,对被巡察单位的性质、业务类型、廉政风险等情况掌握不全面,制定的谈话提纲针对性不强。三是被巡察单位主动配合意识不强。领导班子及其成员政治敏锐性不强,对巡察工作重要性、紧迫性认识不足,主动接受监督意识不强,不敢暴露问题,存在回避、遮掩情况,向巡察组通报、介绍情况不全面、不充分。
五、夫妻共同财产的处理: (1)存款:双方名下现有银行存款共_________元,双方各分一半,为________元。分配方式:各自名下的存款保持不变,但男方/女方应于_______年_______月_____日前一次性支付元给女方/男方。 (2)房屋:夫妻共同所有的位于________________的房地产所有权归女方所有,房地产权证的业主姓名变更的手续自离婚后一个月内办理,男方必须协助女方办理变更的一切手续,过户费用由女方负责。女方应于_____年____月____日前一次性补偿房屋差价____元给男方。 (3)其他财产:婚前双方各自的财产归各自所有,男女双方各自的私人生活用品及首饰归各自所有(附清单)。
甲乙任何一方不得隐瞒、虚报、转移婚内共同财产或婚前财产。如任何一方 有隐瞒、虚报、转移、抽逃除上述个人婚前财产外,另一方发现后有权取得对方所隐瞒、虚报、转移的财产的全部份额,并追究其隐瞒、虚报、转移财产的法律责任,虚报、转移、隐瞒方无权分割该财产。
在盛典现场,七大剧组分别从海量的史料功课中选取一个见证物,讲述了电影里未能详细诉说的细节故事,展开电影背后的历史画卷。七位导演依次介绍了开国大典时升起的新中国第一面国旗、邓稼先研制中国第一颗原子弹时使用的手摇计算机、中国女子排球队获1984年奥运会冠军时的签名纪念排球、永远定格在0分0秒的中国政府对香港恢复行使主权倒计时牌、北京奥运会开幕式上李宁使用的祥云火炬、神舟十一号返回舱,以及歼十战斗机这七个国史见证物的故事。
1、互逆命题:在两个命题中,如果第一个命题的条件是第二个命题的 ,而第一个命题的结论是第二个命题的 ,那么这两个命题互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的 .2、互逆定理:如果一个定理的逆命题也是 ,那么这个逆命题就是原来定理的逆定理.注意(1):逆命题、互逆命题不一定是真命题,但逆定理、互逆定理,一定是真命题.(2):不是所有的定理都有逆定理.自主学习诊断:如图所示:(1)若∠A= ,则AC∥ED,( ).(2)若∠EDB= ,则AC∥ED,( ).(3)若∠A+ =1800,则AB∥FD,( ).(4)若∠A+ =1800,则AC∥ED,( ).
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。