切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
D员干部要把学习贯彻D的创新理论作为思想武装的重中之重,同学习马克思主义基本原理贯通起来,同学习D史、新中国史、改革开放史、社会主义发展史结合起来,同新时代我们进行伟大斗争、建设伟大工程、推进伟大事业、实现伟大梦想的丰富实践联系起来,永不自满、笃信笃行,积极主动学、联系实际学,切实增强贯彻落实的思想自觉和行动自觉。去年我们隆重庆祝了新中国成立70周年,明年我们将迎来中国共产D成立100周年。站在承前启后的关键节点,历史的契机又一次等待我们把握。阔步走在大路上的我们要继续坚定不移推进思想建D、理论强D,坚持以新时代中国特色社会主义思想武装头脑、指导实践、推动工作,让当代中国马克思主义、21世纪马克思主义放射出更加灿烂的真理光芒,带领全国各族人民夺取新的伟大胜利。
一、主要工作开展情况公司D委聚力在组织谋划、宣传发动、理论学习上先学先行,在摸清问题、调查研究、检视整改上先破后立,以五个“先一步”推动ZT教育“第一步”走得实、走得稳,实现良好开局。一是坚持先谋一步,确保组织领导到位。按照xx集团D委学习贯彻新时代中国特色社会主义思想ZT教育工作会议精神和ZT教育实施方案等相关要求,公司D委提前谋划、精心组织,牢牢把准集团D委部署要求,第一时间研究制订《中共xx有限公司委员会学习贯彻新时代中国特色社会主义思想ZT教育工作方案》,明确重点抓好理论学习、调查研究、推动发展、检视整改、建章立制等5项重点任务。方案注重整合D建、安全、经营、发展等核心部门力量,突出“五个一”特点,体现抓好学习这一主线,用好调研这一抓手,聚焦发展这一中心,突出问题这一导向,深化制度这一目标。
二、工作中存在的问题经过不断的努力,街道出版物市场的经营秩序已步入正规,各种侵权盗版和违法违规的经营行为已趋于零,娱乐业步入正规稳步发展,但是仍然存在不足之处。消费者没有形成健康的消费观念,造成违规现象屡禁不止。由于盗版音像制品、印刷品相对正版制品价格低廉,质量相差不远,所以人们大多愿意购买盗版制品,有求就有供,造成违法违规产品一直冲击着市场。三、下一步工作*街道“扫黄打非”工作领导小组根据市里下发的通知,还对下一步“扫黄打非”工作进行了安排部署:一是持续坚持“扫黄打非”工作好的经验及做法;二是不松懈、不麻痹、不厌战,久久为功,完成“扫黄打非·新风”集中行动各项工作任务;三是进一步深化、创新“扫黄打非·新风”集中行动工作方式;努力实现全社会全领域全天候保护未成年人氛围更加浓厚、网络空间持续清朗,努力为*街道建设营造更好的环境。
醉翁亭记(选段)欧阳修①若夫日出而林霏开,云归而岩穴暝,晦明变化者,山间之朝暮也。野芳发而幽香,佳木秀而繁阴,风霜高洁,水落而石出者,山间之四时也。朝而往,暮而归,四时之景不同,而乐亦无穷也。②至于负者歌于途,行者休于树,前者呼,后者应,伛偻提携,往来而不绝者,滁人游也。临溪而渔,溪深而鱼肥,酿泉为酒,泉香而酒洌,山肴野蔌,杂然而前陈者,太守宴也。宴酣之乐,非丝非竹,射者中,弈者胜,觥筹交错,起坐而喧哗者,众宾欢也。苍颜白发,颓然乎其间者,太守醉也。
因为工作忙,在下班后、节假日,大部分时间都关在书房里读书写作,难得陪孩子,一直心怀歉疚。但歉疚时又一如既往地忙。实在心虚得自己都挺不过去了,就想为儿子做点事,( )一下,也安慰一下自己。
十年春,齐师伐我。公将战,曹刿请见。其乡人曰:“肉食者谋之,又何间焉?”刿曰:“肉食者鄙,未能远谋。”乃入见。问:“何以战?”公曰:“衣食所安,弗敢专也,必以分人。”对曰:“小惠未徧,民弗从也。”公曰:“牺牲玉帛,弗敢加也,必以信。”对曰:“小信未孚,神弗福也。”公曰:“小大之狱,虽不能察,必以情。”对曰:“忠之属也。可以一战。战则请从。”
子曰:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?”子曰:“学而不思则罔,思而不学则殆。子曰:“知之者不如好之者,好之者不如乐之者。”子曰:“三人行,必有我师焉。择其善者而从之,其不善者而改之。”子夏曰:“博学而笃志,切问而近思,仁在其中矣。”
班长立刻组织抢修舵链,这才发现,几乎不可能。修舵链要从船头的铁柱处下去,可甲板到船头的舱盖上结了厚冰,舱盖是拱形的,十多米长。平时,船一晃,在上面走都很难。现在结了冰,站都站不住,根本别想走过去。班长看着结冰的舱盖请示陪同的马参谋长:“参谋长,过不过?”“怎么过?”“爬!”“多大把握?”“没有。”马参谋长认真看了看班长,重重拍了他一下。
蔡元定①八岁能诗,及长,登泰山绝顶。日惟啖②荠③。于书无不读,朱熹扣④其学,大惊曰:“此吾老友也,不当在弟子列。”
行路难李白金樽清酒斗十千,玉盘珍羞直万钱。停杯投箸不能食,拔剑四顾心茫然。被渡黄河冰塞川,将登太行雪满山。闲来垂钓碧溪上,忽复乘舟梦日边,行路难!行路难!多歧路,今安在?长风破浪会有时,直挂云帆济沧海。
神舟十二号飞行乘组出征太空,让很多青少年对航天事业燃起了强烈的兴趣和好奇心。中国青年报社对2047名14-35岁青少年进行了专项调查,结果图示如下:
敬爱的老师、叔叔阿姨们: 大家晚上好!(行少先队礼)、。 我是XX班的班长XX。感谢班主任马老师给我这个机会,让我和叔叔阿姨谈谈我的学习方法、读书习惯等等,我担心总结不好,也只能恭敬不如从命。这是我第一次在大人面前正式发言,我担心讲得不好。我爸爸说,只要我说得明白,说话的声音能让叔叔阿姨听得清楚,就算完成了任务,这个信心我有的;如果叔叔阿姨听完之后,回家责骂我的同学你们的孩子,那就是我的罪过! 我要声明两点:一、我今天讲的有不少夸大其词的地方,很多事情我自己也没有做好;二、不要拿自己的孩子跟别人的孩子比较,有问题找解决方法,特别是从家长自己身上找源头,这是我爸爸补充的。 言归正传! 第一:要有一个好的学习环境和学习习惯。我家里有5000多本书,一回到家中就会闻到一股清淡的书香,有时国学机里还会播放着古典音乐或国学诗词文章的朗诵;我家里还有过两只鸟,真是鸟语书香,我仿佛被带入了仙境,容易静下心来读书学习。 白天听课时我会边听边记笔记,就算有些听不懂,我会问老师或回到家把上课笔记好好研究一下,或和爸爸妈妈探讨一下,或网络上查查资料,直到弄懂为止。放学回家,我会先把学过的知识点巩固一遍,然后再做作业。到了晚上,再用放电影法把白天学过知识在脑海里回顾一遍,记忆犹新,温故而知新。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。