一.教材分析本节课选自人教版数学教材三年级下册第二单元《除数是一位数的除法》第二小节《笔算除法》的第一课时——《“一位数除两位数商是两位数”的笔算除法》。1.教材的特点、地位和作用:本节课是整数除法的相关知识,它是在口算除法和除法竖式的基础上进行教学的,又为学生掌握除数是两位数的除法、学习除数是多位数的除法奠定了扎实的知识和思维基础。通过学习,让学生在活动中理解笔算除法的算理,探索用竖式计算的合理程序。教科书安排了两个例题,例1是一位数除两位数,被除数的各个数位上的数都能被整除,主要解决除的顺序和竖式写法的问题;例2也是一位数除两位数,但除到被除数十位上有余数。本节课内容,对学生进一步学习笔算除法有着非常重要的作用。2.教材的重点和难点:重点是理解算理,掌握算法.掌握笔算除法的步骤和商的书写位置。难点是让学生理解每求出一位商后,如果有余数,应该与下一位上的数连在一起继续除的道理。
[设计意图:巩固减法的意义,培养学生初步的思维能力。](2)组织学生自己先算一算,教师巡视,捕捉学生学习信息,纠正不良学习习惯。[设计意图:通过巡视,及时捕捉学生的学习信息,发现问题及时解决;把培养学生良好的计算习惯、审题习惯及检查习惯落到实处。](3)组织学生全班交流计算方法。组织学生在全班交流解决计算“32-2=”的方法,引导学生理解“32是由3个十和2个一组成,从32里去掉2,就剩3个十,所以32减2等于30”。如果学生用其他的方法来计算,只要正确,也要肯定。[设计意图:同前面一样,巩固数的组成,训练每一个学生“述说整十数加一位数相应减法的计算过程”,突破难点。]3.加减法对比组织学生比较“30+2=32”和“32-2=30”,并说一说有什么发现,使学生认识到“3个十和2个一组成32,所以30加2等于32;反过来,32是由3个十和2个一组成,从32里去掉2,就剩3个十,所以32减2等于30”[设计意图:强化加减法意义的联系,培养学生初步的思维能力。]
讨论交流:正是靠着这种民族精神,我国建成了一个个大油田。到1965年,中国的石油基本实现自给。5、补充资料1964年10月16日和1967年6月17日,中国西北罗布泊大漠中,升起了蘑菇状的烟云。我国相继成功爆炸了第一颗原子弹和第一颗氢弹,成为继美国、苏联、英国之后第四个同时拥有原子弹和核弹的国家。中国从此拥有了保家卫国、捍卫和平的核力量。交流邓稼先故事1950年8月,邓稼先在美国获得博士学位九天后,便谢绝了恩师和同校好友的挽留,毅然决定回国。同年10月,邓稼先来到中国科学院近代物理研究所任研究员。在北京外事部门的招待会上,有人问他带了什么回来。他说:“带了几双眼下中国还不能生产的尼龙袜子送给父亲,还带了一脑袋关于原子核的知识。”此后的八年间,他进行了中国原子核理论的研究。
大班幼儿所拥有的经验和技能使他乐于自我发现和探索,他们不满足于知识的传授而更愿意通过自己的努力获得更多的经验和知识。同时,他也能够通过同伴间的合作完成更艰难和具有挑战性的任务,享受成功的满足。《劳动者的工具》所显现的内容是完全静态的成品。大班幼儿会满足于这样的学习方式吗?怎样让静态的东西动起来,成为孩子乐于探索,能够发现的新材料呢?正确选择跟学习材料适合和匹配的教学方法,让枯燥的认知活动成为快乐的事,是成功开展本次活动的精髓。思路定位:1.选择幼儿熟知的、同时具有安全操作性日常生活工具作为本次科学活动的探索和认知对象。引导幼儿用“陌生”的眼光去重新审视熟悉的材料,激发好奇心和活动的兴趣,2.让静态的材料“动”起来。将认知的重点从被动接受转移到主动发现探索上。通过幼儿的亲历亲为去发现工具的特点,并通过与同伴的交流探讨建构成新的内需的知识。3.在与同伴的合作中常识使用工具并获得成功的体验。通过操作和实践来验证自身的发现,同时也进一步了解工具与人类生活的关系。具体教案与环节分析:[活动目标]1.运用多种感官探索和发现工具的秘密,积极探讨交流自己的发现和见解。2.尝试和同伴合作使用某一工具完成任务,体验合作的快乐和尝试的成功。3.初步了解工具与人类生活的关系,激发自豪感。
一、提高站位,切实增强法治政府示范创建工作的责任感法治政府建设示范县是珍贵的品牌和荣誉,是一个地方核心竞争力的直接反映。自2019年起,中央依法治国办公室部署推进法治政府建设示范创建工作,青州、诸城、昌乐3个市县获评“全省法治政府建设示范县(市)”,市司法局构建“1234”工作体系推动法治镇街建设、坊子区深化政务公开打造法治化便利化营商环境、高密市以法治文化助推法治政府建设3个项目,分别获评“全省法治政府建设示范项目”。前期,市委依法治市办公室召开会议,对第二批法治政府示范创建活动进行安排部署,要求各县市切实提高站位,压实责任,精心准备,积极组织开展好法治政府建设示范创建活动,全面提升法治政府建设整体水平。
课程:数学课题: 3.1.1函数的概念课型:讲授课课时:2课时授课班级:2015级南口班授课时间:2016年3月1日授课地点:南口校区教 学 目 标知识目标1.能用函数语言描述图像、解析式中自变量与函数值的依赖关系; 2.会计算函数的定义域,理解值域的含义 3.会用语言表述自变量与函数值间的对应关系能力目标通过对实例的分析,培养学生的观察能力,抽象概括及逻辑思维能力 通过计算函数的定义域,培养学生的计算能力素养目标函数概念的思想蕴含了很多数学思维,也渗透生活中及其他学科范围内,通过学习使学生认同函数的抽象性。教学重 点理解函数的概念教学难 点判断两个函数是否相同教学方 法引导启发,讲练结合教学资 源演示文稿板 书 设 计3.1函数的概念 设集合A、B为非空数集,对于确定的对 应法则f下,在集合A中取定任意一个数x, 在集合B中都有唯一确定的数f(x)与之相 对应,则称f:A→B为集合A到集合B的一 个函数. 记作:y=f(x),x∈A X叫自变量,y叫函数值,集合A叫函数的 定义域,所有函数值组成的集合叫值域。
教学重难点:学会人民币单位间的换算和简单的加减法计算以及学会看物品价格的表示形式第三部分 设计意图1. 通过购物情景的创设,使课堂富有真实的生活气息。2. 为学生搭建知识的攀升阶梯,让学生经历数学知识的发展形成过程。3. 将所学知识应用现实生活中,解决实际问题。第四部分 教学过程一、创设情境,激趣导入。1.孩子们你们喜欢交朋友吗?(喜欢)在班级里谁是你的好朋友呀?(学生回答)你们喜欢我吗?我也想和你们做朋友。今天我还给同学们带来了一个新朋友?你们看它是谁?电脑出示米老鼠你们想和它做朋友吗?想和它做朋友上课就得好好表现,他们才愿意做你们的朋友.谁说一下,上课怎样做才是好好表现呢?(要专心听见,勇敢发言,)老师看看勇敢的你在哪里?
出示例6挂图。教师试问:谁知道0.50元是几角?2.00元是几角?你是怎么知道?以元为单位小数点左边是几就是几元,右边第一位是几就是几角,右边第二位是几就是几分。1.20元是1元2角。35.90元是35元9角。(这部分知识学生知道它表示几元几角就可以了,至于1.20元是个什么数,怎么读、写不需要学生掌握)3、教学例7。(1) 课件演示例7第一小题。教师:0.5元是几角?(5角)0.80元是几角?(8角)学生回答。5角+8角是几角?(5角+8角=13角教师板书)教师问:多少角是1元?13角里面拿出10角还剩多少角?(3角)所以13角等于1元3角。教师板书:5角+8角=13角=1元3角。(2)例7第二小题(课件演示,提出问题:我买这两个气球要多少钱)学生尝试完成,然后提问:你是怎么想的?教师强调:元、角计算,只有在相同单位的情况下,才能相加。
人民币的简单计算是在对人民币的认识后,是人民币的再进一步的认识。本节课的主要知识点主要有三个:一人民币单位间的换算、二进行简单的计算,三是知道商品价格的表示形式。同时通过这节课的学习,逐渐培养交往和社会实践能力,体会人民币在社会生活商品交换中的作用。为了达成以上的一些目标我是这样设计这节课。一、从学生经验入手直接引入商品价格,在学生回忆商品价格的表示方法中,唤醒学生的思绪,使学生觉得在所学的知识与实际生活的联系。让学生体验到数学与日常生活的密切联系。二、在操作中完成进率的换算。进率的换算在教学是一个重点也是难点,为此我在教学上通过不同的的付钱方法,深刻体会,这样的教学让说不清的关系,在操作讲解中得以内化。学生学了也不易忘记。
一、教材分析《3的倍数的特征》是人教版实验教材小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。教材的安排是先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难,因此,本课的教学目标,我从知识、能力、情感三方面综合考虑,确定教学目标如下:1、使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。
不足之处是: 1 、在如何有效地组织学生开展探索规律时,我认为猜想可以锻炼孩子们的创新思维,但猜想必须具有一定的基础,需要因势利导。在开展探索规律时,我先组织让学生猜想秘诀是什么?由于学生缺乏猜想的依据,因此,他们的思维不够活跃,甚至有的学生在 “乱猜 ”。这说明学生缺乏猜想的方向和思维的空间,也是教师在组织教学时需要考虑的问题。 2 、总怕学生在这节课里不能很好的接受知识,所以在个别应放手的地方却还在牵着学生走。总结性的语言也显得有些罗嗦。 3 、课堂上学生参与学习的程度差异很明显的:一部分学生争先恐后地应答,表现得很出众,很活跃;但更多的学生或缺乏勇气,或不善言辞,或没有机会,而沦为听众或观众。 4 、本节课在教学评价方式上略显单一。对学生的评价少,激励性的语言不够。
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
中华民族的脊梁各位老师、同学们:大家早上好!很荣幸能代表高233班在国旗下讲话,今天,我演讲的题目是《中华民族的脊梁》。登上昆仑,才知道什么叫高峻,来到虎门才懂得什么叫雄伟。翻开中国近代史这幅长长的画卷,聚集了多少哀愁,多少屈辱、多少痛苦,这些哀愁、屈辱、痛苦比黄河还要曲折,比大海还要苦涩,南京大屠杀,三十万生命无一幸存。“处处扼咽喉,天涯何处是是神州?”堂堂中华民族在侵略者的铁蹄下呻吟。“凉该读尽支那史,几个男儿非牛马?”面对面山河破碎,国将不国,灾民流离,哀鸿遍野的现实,为什么中华民族的强国梦难以实现,痛心疾首之余,我们需要认真想一想,这是为什么?中华民族的希望在哪里?人们在漫漫长夜,盼望着、等待着……这一天终于来了!
我所理解的民族精神各位老师、同学大家早上好!今天由我代表250班在国旗下讲话,我演讲的主题是:我所理解的民族精神。民族精神是一种社会意识,是一个民族对其社会存在、社会生活的反映,是民族文化的深层内涵。对于一个民族来说,民族精神是其成员所认同的世界观、人生观和价值观。我国是世界文明古国之一。从人文初祖------黄帝到尧舜禹的克已爱民、孝敬父母的精神等等,我们滔滔不绝地炫耀着祖先们的那些精神,但是,又有多少人能够真正意义上的弘扬民族精神呢?当日本修改教科书的时候,当日本人公然侵占中国钓鱼岛的时候,当日本首相小泉纯一郎参拜靖国神社的时候,中国国民拿出什么实际行动了吗?没有!有的只是中国的一个艺人穿着日本的军旗走在美国大街上,难道这就是所谓流传五千年的民族精神吗?
今天市政府召开全市上半年经济运行调度暨优化营商环境专题部署会,主要任务是:聚焦市场主体关切,坚持问题导向,始终保持清醒头脑、战略定力、昂扬干劲,进一步调表对标、明确责任,强化调度、优化环境,全面落实市委工作要求,奋力实现“双过半”,加快推动*高质量发展。下面,我讲三点意见,简单概括为“三知三功”:第一,要在进退之间知荣辱,做实真功省政府最近督查通报了上半年投资和重大项目建设、优化营商环境评价排名情况,总体来看,*这三项重点工作开局良好、喜大于忧,下一步要乘势而上,克难攻坚,努力争取更好结果。(一)排名没想到,彰显了公正。从投资和重大项目建设专项看,七项重点指标综合排名*位居全省第*,首次与*、*处于第一方阵,首次获得省政府*万元奖励。这个成绩既出乎意料,但也在情理之中,说明只要*发展好了,在全省也能勇夺前三名,同时反映了省政府工作作风扎实,督查考核导向严明,体现了公平公正!
一是监管能力实现新提升。基层监管执法全面铺开,“四小规范提升”、学校周边“两店一贩”管理等民生实事项目顺利完成。 二是长效机制建设取得新进展。食品药品监管领域日常工作机制进一步完善,网格化、痕迹化、规范化“三化监管”模式积极推进,各项监管体制机制运转更加有序规范高效。 三是示范创建工作迈出新步伐。“食安X”建设全面完成年度目标任务,诚信体系建设扎实推进,刚才X局长对我县的诚信建设给予了很高的评价,品牌引领行动初见成效。我县拥有“食安X”餐饮服务品牌示范街1条,“食安X”示范单位21家。20**年全省餐饮安全工作年终验收以及学校周边“两店一贩”整治这两项工作,我县都代表X市接受省里的验收并取得了优异成绩。在大家的共同努力下,我县近几年没有发生食品安全事故,群众对食品安全的满意率不断提升。