提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

2023年巩固拓展脱贫攻坚成果同乡村振兴有效衔接工作总结汇编(6篇)

  • 在全市政法工作会议上的交流发言材料汇编2篇

    在全市政法工作会议上的交流发言材料汇编2篇

    一、坚持抓早抓小,做到防患未然突出“早”防。创新发展新时代“枫桥经验”,密切关注、高度警惕各类苗头性、倾向性问题,全面落实排查预警和防范应对措施,最大限度地把各类风险隐患消除在萌芽状态。突出“严”防。统筹推进各类专项整治行动,严防发生影响恶劣的个人极端暴力犯罪案件,严防发生重特大公共安全事故。突出“智”防。充分发挥警务大数据优势,以提升预测预警预防能力为核心,加快构建智能化防控体系,真正做到风险征兆及时发现、风险走向科学判断、风险预防准确到位。

  • 重点项目观摩会上的讲话汇编(16篇)

    重点项目观摩会上的讲话汇编(16篇)

    同志们:今天,我们专门召开这次现场观摩会议,主要目的是深入学习贯彻全市重点项目现场观摩暨冲刺三季度动员会议精神,总结全市文旅特色小镇和夜间文旅经济发展推进情况,观摩学习推广xx区的经验做法。昨天,我们现场观摩了xx文化旅游景观带、牛楼文化特色小镇及花海彩田景区夜间旅游项目。刚才,xx区、xx市、xx镇、xx街道、东方左岸、等闲谷艺术粮仓分别作了典型发言。大家讲的都很好,这些经验做法,不仅可参观、可学习,而且可复制。希望大家互相学习、互相借鉴、共同提高。下面,我以“奋力冲刺三季度、全力决胜下半年,确保圆满完成全年目标任务”为主题,讲四点意见,与大家共勉。一、奋力冲刺三季度、全力决胜下半年,就要亮一亮成绩清单,把发展的信心“提”起来今年以来,全系统在市委、市政府的坚强领导下,提高站位、强化担当、狠抓落实,各项工作成效显著、亮点纷呈。(一)疫情防控力度大。认真落实疫情防控各项要求,深入开展“利剑行动”,无论是文化旅游,还是新闻出版,还是广播电影,疫情防控均做到了有力有效,我市首创的“六个关键环节情况不间断报送”“五个零”长效包保机制两项做法均被省文旅厅在全省推广,并在全省会议上作了典型发言。(二)产业恢复速度快。分6批次推进13类共1151家文旅经营单位复工复产,暂退123家旅行社质保金1693万元,提前兑付44家文旅企业奖励资金183万元,提前免除1780名导游会员注册费40余万元,提前启动文化旅游惠民消费季活动,发放惠民消费券6万余张,举办线上、线下政策解读培训班5期,有效拉动了文旅企业复工复产。

  • 实施乡村建设行动调研报告范文

    实施乡村建设行动调研报告范文

    乡村建设,规划先行。各省均已出台村庄规划编制技术规范,**、**等工作基础较好的省份已基本完成村庄规划编制任务,但绝大多数省份的村庄规划编制仍处于试点阶段,或初步成果阶段,离完成有条件、有需求的村庄应编尽编目标还存在较大差距。从实践来看,一些实施较好的省份从20**年就开始有序推进村庄规划编制工作,但不管是应编尽编的覆盖面,还是编制任务的完成度,都未达到政策预期。比如,**省仅有8300多个村庄形成了“多规合一”实用性村庄规划编制成果,占全省4.58万个村庄总数的18%;**省全面完成了1027个村庄规划试点编制任务,但试点村庄仅占全省村庄总数的11.1%,还有大量有需求的村庄尚待编制规划;**省编制了1711个省级美丽乡村示范村村庄规划,同步推进其他2000余个有条件、有需求村庄开展村庄规划编制工作,目前只是形成了初步成果。

  • 北师大版初中数学九年级下册弧长和扇形的面积的拓展与延伸说课稿

    北师大版初中数学九年级下册弧长和扇形的面积的拓展与延伸说课稿

    五、教学反思:时钟的秒针、分针、时针扫的图形, 汽车挡风玻璃的刮水器;刷工人刷过的面积近似看为扇形。圆中的计算问题---弧长和扇形的面积,虽然新课标、新教材要求学习,但本节教师结合学生的实际要求,将其作为内容进行拓展与延伸,具有一定的实际意义。用生活中动态几何解释扇形,体验解决问题策略的多样性,发展实践能力与创新精神。本节课,教师通过“扇子”的问题情景引入新课,它蕴含了大量的情感信息,有效激发学生的求知欲望,充分调动学生的学习积极性,注重学生的参与,让出时间与空间由学生动手实践,鼓励学生自主探索、合作交流、展示成果,提高了学生发现问题、提出问题、解决问题的能力。用“扇子变化”,帮助学生探索自然界中事物的动静结合问题,利用“扇子的文化”的新奇感激起学生的学习热情,陶冶了学生的学习情操,从而使学生更深切地理解问题,使原本单调枯燥的数学变得生动、形象,激发学生的情感,使课堂充满生机。

  • 【高教版】中职数学拓展模块:1.1《两角和与差的正弦公式与余弦公式》教案

    【高教版】中职数学拓展模块:1.1《两角和与差的正弦公式与余弦公式》教案

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的余弦公式与正弦公式. *创设情境 兴趣导入 问题 我们知道,显然 由此可知 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 10*动脑思考 探索新知 在单位圆(如上图)中,设向量、与x轴正半轴的夹角分别为和,则点A的坐标为(),点B的坐标为(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用诱导公式可以证明,(1)、(2)两式对任意角都成立(证明略).由此得到两角和与差的余弦公式 (1.1)  (1.2) 公式(1.1)反映了的余弦函数与,的三角函数值之间的关系;公式(1.2)反映了的余弦函数与,的三角函数值之间的关系. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 25

  • 【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教案设计

    【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教案设计

    教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点*巩固知识 典型例题 例6 一艘船以每小时36海里的速度向正北方向航行(如图1-9).在A处观察到灯塔C在船的北偏东方向,小时后船行驶到B处,此时灯塔C在船的北偏东方向,求B处和灯塔C的距离(精确到0.1海里). 图1-9 A 解因为∠NBC=,A=,所以.由题意知 (海里). 由正弦定理得 (海里). 答:B处离灯塔约为海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和(图1-10),在平地上选择适合测量的点C,如果,m,m,试计算隧道AB的长度(精确到m). 图1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的长度约为409m. 例8 三个力作用于一点O(如图1-11)并且处于平衡状态,已知的大小分别为100N,120N,的夹角是60°,求F的大小(精确到1N)和方向. 图1-11 解 由向量加法的平行四边形法则知,向量表示F1,F2的合力F合,由力的平衡原理知,F应在的反向延长线上,且大小与F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F与F1间的夹角是180°–33°=147°. 答:F约为191N,F与F合的方向相反,且与F1的夹角约为147°. 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点

  • 【高教版】中职数学拓展模块:1.2《正弦型函数》教学设计

    【高教版】中职数学拓展模块:1.2《正弦型函数》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15

  • 【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教案

    【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教案

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 我们知道,在直角三角形(如图)中,,,即 ,, 由于,所以,于是 . 图1-6 所以 . 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 10*动脑思考 探索新知 在任意三角形中,是否也存在类似的数量关系呢? c 图1-7 当三角形为钝角三角形时,不妨设角为钝角,如图所示,以为原点,以射线的方向为轴正方向,建立直角坐标系,则 两边取与单位向量的数量积,得 由于设与角A,B,C相对应的边长分别为a,b,c,故 即 所以 同理可得 即 当三角形为锐角三角形时,同样可以得到这个结论.于是得到正弦定理: 在三角形中,各边与它所对的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列问题: (1)已知三角形的两个角和任意一边,求其他两边和一角. (2)已知三角形的两边和其中一边所对角,求其他两角和一边. 详细分析讲解 总结 归纳 详细分析讲解 思考 理解 记忆 理解 记忆 带领 学生 总结 20

  • 【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教学设计

    【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题,经常需要应用正弦定理或余弦定理. 介绍 播放 课件 了解 观看 课件 学生自然的走向知识点 0 5*巩固知识 典型例题 例6一艘船以每小时36海里的速度向正北方向航行(如图1-14).在A处观察灯塔C在船的北偏东30°,0.5小时后船行驶到B处,再观察灯塔C在船的北偏东45°,求B处和灯塔C的距离(精确到0.1海里). 解 因为∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B处离灯塔约为34.8海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和B(图1-15),在平地上选择适合测量的点C,如果C=60°,AB = 350m,BC = 450m,试计算隧道AB的长度(精确到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的长度约为409m. 图1-15 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 40

  • 【高教版】中职数学拓展模块:3.1《排列与组合》优秀教学设计

    【高教版】中职数学拓展模块:3.1《排列与组合》优秀教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.1 排列与组合. *创设情境 兴趣导入 基础模块中,曾经学习了两个计数原理.大家知道: (1)如果完成一件事,有N类方式.第一类方式有k1种方法,第二类方式有k2种方法,……,第n类方式有kn种方法,那么完成这件事的方法共有 = + +…+(种). (3.1) (2)如果完成一件事,需要分成N个步骤.完成第1个步骤有k1种方法,完成第2个步骤有k2种方法,……,完成第n个步骤有kn种方法,并且只有这n个步骤都完成后,这件事才能完成,那么完成这件事的方法共有 = · ·…·(种). (3.2) 下面看一个问题: 在北京、重庆、上海3个民航站之间的直达航线,需要准备多少种不同的机票? 这个问题就是从北京、重庆、上海3个民航站中,每次取出2个站,按照起点在前,终点在后的顺序排列,求不同的排列方法的总数. 首先确定机票的起点,从3个民航站中任意选取1个,有3种不同的方法;然后确定机票的终点,从剩余的2个民航站中任意选取1个,有2种不同的方法.根据分步计数原理,共有3×2=6种不同的方法,即需要准备6种不同的飞机票: 北京→重庆,北京→上海,重庆→北京,重庆→上海,上海→北京,上海→重庆. 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 15*动脑思考 探索新知 我们将被取的对象(如上面问题中的民航站)叫做元素,上面的问题就是:从3个不同元素中,任取2个,按照一定的顺序排成一列,可以得到多少种不同的排列. 一般地,从n个不同元素中,任取m (m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,时叫做选排列,时叫做全排列. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20

  • 【高教版】中职数学拓展模块:3.2《二项式定理》教学设计

    【高教版】中职数学拓展模块:3.2《二项式定理》教学设计

    一、定义:  ,这一公式表示的定理叫做二项式定理,其中公式右边的多项式叫做的二项展开式;上述二项展开式中各项的系数 叫做二项式系数,第项叫做二项展开式的通项,用表示;叫做二项展开式的通项公式.二、二项展开式的特点与功能1. 二项展开式的特点项数:二项展开式共(二项式的指数+1)项;指数:二项展开式各项的第一字母依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数;系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母的幂指数;2. 二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据.又注意到在的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列.因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据.

  • 【高教版】中职数学拓展模块:3.3《离散型随机变量及其分布》教学设计

    【高教版】中职数学拓展模块:3.3《离散型随机变量及其分布》教学设计

    重点分析:本节课的重点是离散型随机变量的概率分布,难点是理解离散型随机变量的概念. 离散型随机变量 突破难点的方法: 函数的自变量 随机变量 连续型随机变量 函数可以列表 X123456p 2 4 6 8 10 12

  • 人教版高中历史必修2殖民扩张与世界市场的拓展教案

    人教版高中历史必修2殖民扩张与世界市场的拓展教案

    ●活动与探究从葡萄牙、西班牙、荷兰的兴衰历程,从英国的强盛历程,我们从中可获得什么启示?启示:积极发展本国的工商业;实现制度创新;抓住机遇,及时更新观念;建立能保障自身经济顺利发展的国防力量,尤其是海军力量;积极发展海外贸易,实行对外开放……★本课小结16世纪后期荷兰积极向海外殖民扩张,在17世纪建立了世界范围内的殖民帝国;17世纪开始,英国也积极向海外殖民扩张,并与荷兰、法国进行了激烈的争夺,到18世纪中期,英国成为世界上最大的殖民国家,最终确立了世界殖民霸权;新航路开辟后,伴随着殖民扩张,人类的商业活动开始在全球范围内开展,人类的经济活动由于世界市场的出现而第一次被广泛地联系在一起,而西欧国家对殖民地财富、资源、劳动力的暴力掠夺,是欧洲发展和兴旺的重要条件,也是亚、非、拉美灾难的根源。

  • 在全市优化营商环境暨项目大会战动员大会发言材料汇编6篇

    在全市优化营商环境暨项目大会战动员大会发言材料汇编6篇

    一、持续深化政务改革,改革创新出实招继续做好扩大相对集中许可权改革试点工作,有序承接XXX项(含XXX子项)行政许可事项划转工作;及时衔接落实上级取消、下放、改变管理方式的行政许可事项;深入推进企业开办全程网办等商事领域改革,积极推进项目前期“一件事一次办”等投资项目领域改革,进一步优化流程,压缩审批时限,服务全市重大项目建设。

  • 化工公司安全生产规章制度汇编资料

    化工公司安全生产规章制度汇编资料

    1. 贯彻落实“安全第一、预防为主、综合治理”的安全方针、“预防为主,防消结合”的消防方针和“预防为主,防治结合”的职业病防治方针,强化各级安全责任制,确保生产稳定,减少或杜绝安全事故。2. 总经理是公司安全生产第一责任人,公司各级领导、职能部门,必须贯彻“谁主管谁负责”的原则,在各自主管的工作范围内,对安全工作负责。3. 企业每位员工都必须在自己的岗位上认真履行安全职责,横向到边,纵向到底,严格执行一岗双责,做到恪尽职守,各负其责。

  • 大班语言教案:城市老鼠和乡村老鼠 大班语言综合活动

    大班语言教案:城市老鼠和乡村老鼠 大班语言综合活动

    一、活动目标1、欣赏图片,感受城市、乡村各具特色的美景和生活。2、在辩论活动中了解城市和农村的不同生活方式,懂得适合自己的才是最好的。二、 活动准备:1、事先安排幼儿参观城市或者乡村,布置主题墙面的城市和乡村的图片。2、情景童话剧表演,布置场地。3、动画制作。4、城市和乡村的图片若干张

  • 供电所日常管理规章制度汇编

    供电所日常管理规章制度汇编

    二、供电所人员因事请假,须经供电所所长同意,供电所所长因事请假,须经县级供电公司同意。  三、供电所人员应实行挂牌上岗制度,必须坚守岗位,不得擅自离岗、串岗、溜岗,不得干私活;不得酒后上班;必须服从工作安排,主动完成工作任务。  四、对迟到、早退的供电所人员,领导应加强思想教育;对经常违纪违规屡教不改者,可视情节严重,按有关规定给予必要的处分。

  • 供电所日常管理规章制度汇编

    供电所日常管理规章制度汇编

    二、供电所人员因事请假,须经供电所所长同意,供电所所长因事请假,须经县级供电公司同意。  三、供电所人员应实行挂牌上岗制度,必须坚守岗位,不得擅自离岗、串岗、溜岗,不得干私活;不得酒后上班;必须服从工作安排,主动完成工作任务。  四、对迟到、早退的供电所人员,领导应加强思想教育;对经常违纪违规屡教不改者,可视情节严重,按有关规定给予必要的处分。

  • 学校各类安全应急预案汇编(56页)

    学校各类安全应急预案汇编(56页)

    1、预防为主,常备不懈。提高师生对突发食品卫生事件的防范意识,落实各项防范措施,做好人员、技术、物资和设备的应急储备工作。对各类可能引发突发食品卫生事件的情况要及时进行分析、预警,做到早发现、早报告、早处理。2、统一领导,分级负责。根据突发食品卫生事件的范围、性质和危害程度,对突发食品卫生事件实行分级管理。校长负责突发食品卫生事件应急处理的统一领导和指挥,学校各部门按照预案规定,在各自的职责范围内做好突发食品卫生事件应急处理的有关工作。

  • 【高教版】中职数学拓展模块:1.1《两角和与差的正弦公式与余弦公式》教案设计

    【高教版】中职数学拓展模块:1.1《两角和与差的正弦公式与余弦公式》教案设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的正弦公式与余弦公式. *创设情境 兴趣导入 问题 两角和的余弦公式内容是什么? 两角和的余弦公式内容是什么? 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 5*动脑思考 探索新知 由同角三角函数关系,知 , 当时,得到 (1.5) 利用诱导公式可以得到 (1.6) 注意 在两角和与差的正切公式中,的取值应使式子的左右两端都有意义. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 15*巩固知识 典型例题 例7求的值, 分析 可以将75°角看作30°角与45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)题可以逆用公式(1.3);(2)题可以利用进行转换. 解(1) ; (2) . 【小提示】 例4(2)中,将1写成,从而使得三角式可以应用公式.要注意应用这种变形方法来解决问题. 引领 讲解 说明 引领 分析 说明 启发 引导 启发 分析 观察 思考 主动 求解 观察 思考 理解 口答 注意 观察 学生 是否 理解 知识 点 学生 自我 发现 归纳 25

上一页123...293031323334353637383940下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。