2. 引导幼儿关心周围的社会生活环境。3. 感受帮助朋友的快乐,培养幼儿关心自然界,爱护树木的情感。准备:1.环境创设:树林和一名扮演“大树妈妈”的老师。2.小鸟头饰人手一个,鸟妈妈头饰一个。3.小鸟飞音乐带,录音机。4.画纸、水彩笔人手一份。
2.能大胆想象,创造性地运用形体表现。二、活动准备 一段活泼的音乐,一盘剪辑好的音乐磁带(由活泼的、优美的、有力的等各种不同性质的音乐串连而成)、录音机。三、活动过程1.律动《健康歌》2.感受音乐,并尝试用形体动作表现。
(一)为何禁止青少年吸烟:根据世界卫生组织的统计,在世界各地每8秒钟就有一人死于与吸烟有关的疾病,每年有近500 万人因吸烟致死。这一数字在未来20 年中将有可能增加一倍。吸烟已经成为世界上最主要的致死因素之一。我国是一个烟草大国,目前吸烟人数约为3.2亿。在控制未成年人吸烟这个问题上,政府做了大量的工作,并于去年11月10日签署了联合国《烟草控制框架公约》,这一公约将于今年2月28日正式生效。但一个不容回避的事实是:在我国,未成年人吸烟率呈上升趋势,未成年人开始吸烟的年龄在下降,每天有8 万左右青少年成为长期烟民。这种状况不但影响了孩子的健康成长,而且严重影响我国整体国民身体素质的提高,所以未成年人吸烟问题越来越引起社会的广泛关注。
活动过程:一、引出故事师:今天我带来一本书,谁认识这些字?(连起来念:猜猜我有多爱你)师:谁心里有爱的?有谁爱你吗?(爸爸、妈妈)师:这是关于谁和谁爱的故事呢?(兔子和兔妈妈) 二、教师讲故事,幼儿欣赏。1、故事:小兔子该上床睡觉了,可是他紧紧地抓住兔妈妈的长耳朵不放。他要妈妈好好听他说“猜猜我有多爱你”。“喔,这我可猜不出来”,兔妈妈说停。提问:刚才小兔子对妈妈说了一句什么话?2、故事:小兔子把手臂张开,开得不能在开。“妈妈我爱你有这么多”。兔妈妈的手臂要长的多,他说“我爱你有这么多”“恩,这真是很多”小兔子想。停提问:小兔子用了一个什么动作来表示爱的?(把手臂张开,张到无法再张开。)提问:为什么要张开?(说明心里的爱多)一起来表演:“我爱你有这么多。”
2.培养幼儿在观察活动中探索学习的能力。3. 引导幼儿初步了解龋齿形成的原因及怎样预防。 活动准备:1.电脑、教学光盘、教学挂图数幅挂在活动室墙上小镜子每人一个2.了解本班幼儿得龋齿的情况 活动过程:1.观察牙齿,引出课题。 请幼儿照镜子观察自己的牙齿,有什么发现?“变黑、变坏或者补洞的牙齿是怎么回事?—龋齿 龋齿是怎么得的?是虫子咬得吗?还是其他什么原因?2.了解龋齿形成的原因。(1)带着问题看光盘。 提问:龋齿是怎么得的?是虫子咬得吗?还是其他什么原因?“是什么东西把牙齿变成一种酸腐蚀掉的?(2) 带着问题重点看光盘边了解引起龋齿的原因。
2、知道水果有丰富的营养,鼓励幼儿多吃水果。活动准备:水果若干、录音故事。活动过程:一、谈话引出主题1、小朋友,你们喜欢吃水果吗?2、你喜欢吃什么水果?3、为什么要多吃水果?
2、培养幼儿分析问题、解决问题的能力。 3、理解故事主要情节,学习从身边小事做起。 重难点分析: 重点:理解故事内容,体会不同人物的心理活动。 难点:萌发幼儿的责任感,懂得做事替大家着想。 活动准备: 1、课件《路上有个小土坑》。 2、有关幼儿在园中的环境和生活照片。 3、有关的区域环境。 活动过程:1、激发幼儿听故事的兴趣。 提问:路上有个小土坑,假如你看到,会怎样做?从幼儿回答中发现问题,进行有针对性地评价。
煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x的关系式;(2)写出y与x的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为总利润y=甲产品的利润+乙产品的利润.解:(1)因为4m+10x=300,所以m=150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y=600x+1000m.将m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.
教学过程一、谈话激趣,引入课题师:同学们,你们喜欢小动物吗?动物是人类的朋友,我们都要爱护它们。人们还把可爱的动物做成各种形状的卡通画呢,用它们作为吉祥物参加各种盛会。请把你最喜欢的动物的名字写在卡片纸上,只写一种动物,不会写的也可以画出成图形或卡通形象。谁来说一说。同学们的盛会是六一节,学校准备把同学们最喜欢的动物作为吉祥物布置到校园。该把哪种动物作为吉祥物呢?怎样才知道哪种动物是同学们最喜爱的动物呢?师:对没有调查就没有发言权,调查一下哪种动物最受我们喜欢就行了。用什么方法才能知道喜欢某种动物的人最多呢?请小组讨论下该怎样调查呢?把详细的过程说出来。二、小组合作,探究新知1、说一说,你们组准备怎样开展调查生1:我们让喜欢某种小动物的同学举手。查一查人数就行了。
3、认识正画、上面、右面。为了培养学生的自主学习能力,在这一活动中,首先我与学生交谈:“同学们,你们知道吗,刚才我们看到的物体的三个面都有自己的名字。”然后大胆放手,指导学生阅读教材,寻找答案;接着通过指认长方体纸箱、讲桌及班级中可能有的长方体物品的三个面加以理解,最后变换某一物品的摆放方向,请学生再次指认各面,使学生明白所谓的“正面、右面、上面”是会发生变化的。三、巩固练习,深化认识重视生活应用,让学生实践数学,学以致用是数学教学的一个重要原则。针对这一原则,在这个环节中,我安排了一组梯度式练习题:巩固深化题。教材26页的“连一连”、27页“练一练”中的1、3题;实际应用题。看图猜物、小小摄影师;课外延伸题。鼓励学生回家后与家长一起观察生活中的一件物体,试着把看到的形状画下来,结合着画为家长讲一讲本节课学到的知识。
一、教材分析:《小熊购物》是北师大版三年级上第1单元的第一课时,本单元学习内容是在学生学习了加、减、乘、除法的基础上进行的,这是学生第一次接触两步运算题,教材不是以单纯学习计算法则的形式出现,而是通过“小熊购物”主题图呈现生活情境,将教学内容和解决问题过程有机结合,教材列举了用分步算式和综合算式得出结果,在综合列式方法中,出现了两种情况:一种是将乘法放在前面,另一种则将乘法放在后面。这样做的目的是为了让学生了解在加法和乘法的综合算式中,无论乘法在前还是在后,都要先算乘法,再算加法。二.学情分析:学生已经掌握表内乘法,能熟练地进行加、减、乘、除法的运算,并具备提出简单问题和解决问题的能力,这些都是学生学习本课知识的前提和基础。从学生熟悉的购买商品的事例中,由直观到抽象,层层深入,经过动脑想、动笔算,抽象出混合运算的意义及运算顺序。
一、说教材本节课的内容是三位数的连加计算,学生已经在一、二年级学习了百以内的连加、连减、加减混合运算,本节课是在此基础上安排的。学习本节课可以使学生原有的认知结构得到充实和发展,为一位数乘除三位数的学习奠定基础。二.学情分析连加法的数量关系学生早就熟悉,理解也比较容易,本节所呈现的:"捐书"情景的数量关系也很简单,只是每个数据都比较大,能正确计算是本节课的重点.因此,教科书在编排上,鼓励学生独立探索并掌握计算的方法,特别是计算过程中出现连续进位的情况,提醒学生多加注意,养成认真计算,及时验算的良好习惯,并要求学生在计算之前先估一估结果的大致范围.三.说教学目标:根据>第一学段在“数与代数”中提出的要重视学生探究知识的过程,加强估算能力,提倡算法多样化,结合教材的特点和学生的实际情况,确定本课的教学目标为
在探究估算方法的时候,教师要注重适时的引导,以免让学生无从下手.在教学过程中一定要让学生体会估算的实用价值,了解到“数学既来源与生活,又回归到生活为生活服务”.(二)课堂评价的一些思考在教学中要多鼓励学生用自己的语言表达他们的想法,在估算的过程中多给予适当的引导和评价,让学生逐步把握估算的方法,找到解决问题的信心.比如对“画能挂上去吗”这个问题情境,学生可能提出不同的看法,有些学生可能认为可以挂上去,因为人还有身高,完全可以弥补梯子稳定摆放的高度和挂画位置的高度之间的差距,有些学生可能认为,人不可能爬到梯子的顶部,加上人如果本来比较矮,画就不能挂上去等等想法,教师都应该给予肯定,这样才能激发学生思考问题的热情,调动学生探究问题的积极性.作为教师,一定要尊重学生的个体差异,满足多样化的学习需要,鼓励探究方式、表达方式和解题方法的多样化.
一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大正方形,那么有a2=2,a=________,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫做x的平方,反过来x叫做a的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.
第一单元 圆1.圆的定义:平面上的一种曲线图形。2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫作半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。4.圆心确定圆的位置,半径确定圆的大小。5.直径:通过圆心并且两端都在圆上的线段叫作直径。直径一般用字母d表示。6.在同一个圆内,所有的半径都相等,所有的直径都相等。7.在同一个圆内,有无数条半径,有无数条直径。8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:d=2r r =1/2d 用文字表示为:半径=直径÷2 直径=半径×2
已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
4、 填表:相反数 绝对值21 0 -0.75 5、 画一条数轴,在数轴上分别标出绝对值是6 , 1.2 , 0 的数6、 计算:(1) (2) 五、探究学习1、某人因工作需要租出租车从A站出发,先向南行驶6 Km至B处,后向北行驶10 Km至 C处,接着又向南行驶7 Km至D处,最后又向北行驶2 Km至E处。请通过列式计算回答下列两个问题:(1) 这个人乘车一共行驶了多少千米?(2) 这个人最后的目的地在离出发地的什么方向上,相隔多少千米 ?2、写出绝对值小于3的整数,并把它们记在数轴上。六、小结一头牛耕耘在一块田 地上,忙碌了一整天,表面上它在原地踏步,没有踏出这块土地,但我们说,它付出了艰辛和汗水,因为它所走过 的距离之和,有时候我们是无法 想象的。这就是今天所学的绝对值的意义所在。所以绝对值是不考虑方向意义时的一种数值表示。七、布置作业做作业本中相应的部分。
一、 背景与意义分析统计主要研究现实生活中的数据,它通过收集、整理、描述和分析数据来帮助人们对事物的发展作出合理的判断,能够利用数据信息和对数据进行处理已成为信息时代每一位公民必备的素质。通过对本章全面调查和抽样调查的学习,学生可基本掌握收集和整理数据的方法。二、 学习与导学目标1 知识积累与疏导:通过复习小结,进一步领悟到现实生活中通过数据处理,对未知的事情作出合理的推断的事实。2 技能掌握与指导:通过复习,进一步明确数据处理的一般过程。3 智能提高与训导:在与他人交流合作的过程中学会设计调查问卷。4 情感修炼与提高:积极创设情境,参与调查、整理数据,体会社会调查的艰辛与乐趣。5 观念确认与引导:体会从实践中来到实践中去的辨证思想。三、 障碍与生成关注调查问卷的设计及根据调查总结的报告给出合理的预测。四、 学程与导程活动活动一 回顾本章内容,绘制知识结构图
一.学习目的和要求:1.对本章内容的认识更全面、更系统化。2.进一步加深对本章基础知识的理解以及基本技能的掌握,并能灵活运用。二.学习重点和难点:重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算的灵活运用。难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算的灵活运用与提高。三.学习方法:归纳,总结 交流、练习 探究 相结合 四.教学目标和教学目标解析:教学目标1 同类项 同类项:所含字母相同,并且相同字母的指数也分别相等的项,另外所有的常数项都是同类项。例如: 与 是同类项; 与 是同类项。注意:同类项与系数大小无关,与字母的排列顺序无关。教学目标2 合并同类项法则 合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数保持不变,如: 。
. 一个数的倒数等于它本身的数是()A.1 B. C.±1 D.04. 下列判断错误的是()A.任何数的绝对值一定是非负数; B.一个负数的绝对值一定是正数;C.一个正数的绝对值一定是正数; D.一个数不是正数就是负数;5. 有理数a、b、c在数轴上的位置如图所示则下列结论正确的是()A.a>b>0>c B.b>0>a>cC.b<a<0< D.a<b<c<06.两个有理数的和是正数,积是负数,则这两个有理数( )A.都是正数; B.都是负数; C.一正一负,且正数的绝对值较大; D.一正一负,且负数的绝对值较大。7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )A.3或13 B.13或-13 C.3或-3 D.-3或-138. 大于-1999而小于2000的所有整数的和是()A.-1999 B.-1998 C.1999 D.20009. 当n为正整数时, 的值是()
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。