情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
一、 引题 秋天到了,一片片树叶落下来,树叶落下来是怎么样的?(幼儿自由讲述) 二、 幼儿探索并讨论。 1、幼儿猜想并尝试:你桌上东西落下是怎么样的?每一样东西都试一试。 2、引导幼儿和同伴比较,发现物体下落时的异同。 “请你找一个好朋友比一比,看看你们手里的东西落下来有什么不一样?” 3、幼儿交流:(1)你有什么发现吗?(幼儿自由交流) (2)为什么有的物体落的快,有的物体落的慢? 4、小结:所有的物体都会下落的,不同物体下落的速度有快有慢。 5、师演示一张皱纸和一块积木,引导幼儿观察,发现物体下落路线是不一样的。
1、规范和加强教学“五认真”管理。钻研教材,精心备课,要做到:了解本单元的教学内容和其与前后内容的联系;确立单元教学目标;合理划分课时,初步确定每课时的教学内容;分课时备课。分课时备课,要注意做到教学目标具体化;重点和难点准确定位;进行学情分析和教学战略分析;教学过程的设计中要包括教学方法的选择、媒体的使用和活动形式的设计,以形成个性化的设计方案。??2、坚决杜绝随意加快教学进度、拔高教学要求的现象,力求轻负优质,练习设计要注意科学性、针对性和有效性,作业杜绝过重,无效。
1. Aims on the knowledge(1) To enable the Ss tounderstand and speak: “My schoolbag is heavy. What’s in it? Thank you sooooooomuch.” Make sure that Ss can use these sentences in real situations.(2) To help Ss to finish thesurvey.(3) Let Ss finish theassessment of “Let’s check” in this unit.2. Aims on the abilities(1) To develop Ss’ abilitiesof listening and speaking.(2) To train the Ss’ abilityof working in groups.(3) To foster Ss’ abilities ofcommunication and their innovation. 3. Aims on the emotion(1)To foster Ss’ consciousnessof good co-operation and proper competition.(2) To lead Ss to show theirloveliness to the poor.
(二)学情分析: 由于本课是第一单元的一篇精读课文,学习主题是“感受生活的丰富多彩”。三年级的学生,已经具备了一些的对课文内容初步的感悟能力,遇到疑问也有了一些初步的理解分析能力,但是学生自觉性还需加强,课堂上自读自悟时,老师需要加强指导。 (三)根据《语文课程标准》对第二学段的要求,结合本课特点和单元目标以及学生实际情况,我制定了本课第一课时的教学目标为: 1.认读“钓、拢”两个生字,能正确书写“绒、瓣”两个字。会读 “钓鱼、使劲、合拢、玩耍、一本正经、引人注目”等词语并结合生活实际理解重点词句,。 2.通过圈划词句、想象说话、多形式朗读等语言实践活动,感受金色的草地的美丽景色,并弄清草地变化的原因。 3.借助句子排序练习,体会段落中句子的有序表达。 4.积累描写草地的句子,进一步感受大自然的奇妙,增强孩子们观察自然,了解自然的意识。。
教学目标:1、引导学生通读课文,限度地促成每个层面的学生,都能将课文读正确,读通顺。2、学习从课文资料体会思想的方法,引导学生抓住文中描述父亲言行的句子,结合上下文进行理解,从中体会父亲在开垦菜园的过程中付出的艰辛劳动,感受父亲身上表现出来的那种坚毅、自信、勤劳的品格,明白要想获取成功必须勇于克服困难,坚持努力奋斗的道理。3、在读悟结合、丰富言语实践活动中,发展历练学生语言,在读中提升情感,唤起对父亲的崇敬。[说教法学法]为了达成上述的教学目标,本课选择的基本教法是“着眼课题、以读为本、读中感悟、导读解疑、语思统一”的导学式教学法。在操作过程中采用“读、疑、思、划”等教学手段突出重点,突破难点。培养学生质疑课题,着眼课题理解课文资料的思维习惯,培养学生朗读本事,培养语感。
虽然我们具备了创建全国文明城市的一定条件,但我们还要充分认识到全国文明城市是所有城市品牌中含金量最高、创建难度最大的一个,是最能反映城市整体文明水平的综合性荣誉称号。环境整洁、卫生清洁、交通文明是城市文明的最直接表现,是成功创文的重要保证。今天举办启动仪式的目的是明确目标,提振士气,提升信心,在今后工作中,还靠大家发扬“钉钉子精神”和“工匠精神”,敢于担当,敢于作为。借今天的机会,我想提三点意见,与大家一起共勉,携手共创全国文明城市:
一、真抓实干,全省住建领域安全生产工作取得实效 今年以来,在省委、省政府的正确领导和住建部的大力支持关心下,全省住建系统坚持以提高建筑施工安全生产水平为目的,以房屋市政工程安全生产治理行动为主线,以推动企业落实安全生产主体责任为重点,狠抓危大工程安全管控,全力开展自建房安全专项整治和安全隐患排查治理,取得较好成效。截止目前,全省房屋市政工程领域未发生较大及以上生产安全事故,坚决遏制了重大事故发生,为我省建筑业高质量发展营造了稳定的安全生产环境
我一直都喜欢阅读课外书籍,每天都会利用时间来阅读,比如放学后,比如在假期内都是我阅读的时间,课外阅读能够增加知识,更能够让我们学到更多的东西。 因为我经常阅读课外书籍,我在写作文时,能够轻易的运用好每个文字,同时也能够看到更多不同的文化,习俗,学习很多人生哲理,让我得到了极大的成长。从阅读中找到更加有趣的知识,丰富自己的知识储备,对我们来说这是成长,更是一次体验,课外阅读的好处不光是这些,更能够提升我们的阅读理解能力。
人有时候都是会累的,都会抱怨,工作忙,工作累,工作是受罪。都喜欢自由,喜欢家,因为在家觉得轻松自在不受束缚,于是我们越是抱怨,越是觉得累。越是觉得这简直就是再受罪。从而我们会慢慢变的迟到早退偷懒服务态度不好等等对工作不认真负责的状况屡屡发生,然而我们应该问问自己,这是不付责任的。 只有员工将企业的事情当作自己的事业来做,将企业当作自己的家,才可以造就一个充满生机,具有活力的企业。
这是一个绽放梦想的时代,在中共十八精神的引领下,为扩大和巩固教育成果、弘扬民族精神,切实加强队员的思想道德建设工作,推动“我的梦 中国梦”主题教育活动的深入开展,我们将开展一次以“中国梦 我的梦”为主题的班队会活动,帮助学生了解祖国的过去,认识祖国的现在,展望祖国的未来,激发学生的民族自豪感,培养爱国情感,树立远大理想,牢记历史使命。从小培养他们的梦想,鼓励他们的原创和发现,尊重创新合作精神,帮助他们树立正确的人生观。二、说活动目标本节课要达到三个活动目标:1、引导学生仰望天空,怀抱梦想。用健康向上的美好心灵去实现创新进取的人生。引领学生价值观和人生观健康发展。能够认识到什么是梦想,为什么要有梦想。2、激发学生的创造力和想象力,明白实现梦想需要不怕困难、坚持、协作和探索。引导学生确立正确的梦想。3、指导学生如何在日常的学习生活中一步步实现自己的梦想。 三、说活动准备
一、工作目标: 1、普及各类突发公共卫生事件的防治知识,提高广大师生员工的自我防范意识。 2、完善突发公共卫生事件的信息监测报告网络,做到早发现、早报告、早隔离、早治疗。 3、建立快速反应和应急处理机制,及时采取措施,确保突发公共卫生事件不发生及在校园蔓延。
四、救援小组出动总指挥根据已经查明的事故现场情况,与各相关部门、专家、企业专业技术人员会商后立即作出以下决定:1.警戒保卫组,公安交警部门立即维护现场秩序,划出警戒区域;2.现场救援组,应急部门负责现场救援工作,指导矿山抢险救援人员营救被困人员,消防部门协助抢险救援工作;3.医疗救护组,卫健部门组织120救护人员对受伤人员进行现场紧急救护并送往医院;4.善后处理组,工会、民政、人力资源社会保障等部门及有关保险机构,配合当地政府做好善后处理工作;4.新闻宣传组,市委宣传部门做好新闻发布工作。
四、救援小组出动总指挥根据已经查明的事故现场情况,与各相关部门、专家、企业专业技术人员会商后立即作出以下决定:1.警戒保卫组,公安交警部门立即维护现场秩序,划出警戒区域;2.现场救援组,应急部门负责现场救援工作,指导矿山抢险救援人员营救被困人员,消防部门协助抢险救援工作;3.医疗救护组,卫健部门组织120救护人员对受伤人员进行现场紧急救护并送往医院;4.善后处理组,工会、民政、人力资源社会保障等部门及有关保险机构,配合当地政府做好善后处理工作;4.新闻宣传组,市委宣传部门做好新闻发布工作。
1、牢固树立“安全第一,预防为主”的思想。活动前各班对幼儿进行专题安全教育,特别注意交通安全、饮食卫生、游戏安全等容易引发事故环节的安全教育,增强幼儿的安全意识和自我保护能力。 2、活动必须保持高度统一性,活动全过程(活动线路、集合、返幼儿园时间、安全规定等)服从活动领导小组的统一指挥。学幼儿园指派行政领导全程参与年级指导,班主任与配班教师共同做好本班组织管理工作。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。