3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
活动目标: 1、尝试在故事情景中大胆、清楚地表述自己的想法,提高观察、分析问题及解决问题的能力。 2、感受到齐心协力能更好地做好一件事。 活动重点:尝试在故事情景中大胆、清楚地表述自己的想法,提高观察、分析问题及解决问题的能力。 活动难点:感受到齐心协力能更好地做好一件事。 活动准备:1、孩子们已经有了一些和尚的衣食住行方面的知识经验。 2、丰富幼儿看图说话的经验。 3、会唱歌曲《三个和尚》。 4、《三个和尚》故事片、课件、磁带。
2.开展早春蚊虫控制工作。结合环境卫生综合整治,全面开展蚊蝇孳生地调查、治理和密度控制,重点清理和管理室内外各类积水容器和垃圾杂物,对不能清除的积水和积水容器,通过投放鱼苗或灭蚊幼剂减少蚊幼。组织以各类地下空间、餐饮行业、集贸市场等为重点,开展早春蚊蝇集中消杀,以减少和控制第一代蚊蝇的繁殖活动。3.加强重点场所病媒生物防制。督促各类老旧小区、建筑工地、地下空间、公厕、垃圾中转站及环卫设施等重点场所,以及公共绿地、旅游景点、大型商体等人群集中场所的日常防制工作,开展病媒生物消杀工作,同时发动各类场所开展以清垃圾、去积水、堵鼠洞为主要内容的环境治理,从源头上消除病媒生物孳生地,降低病媒生物环境容纳量,切实控制病媒生物密度。要持续加强农村地区和城乡结合部等重点环境的防蚊灭鼠工作。
同学们、老师们,大家早上好!世上本没有路,走的人多了,也便成了路;世上本没有交通规则,路上的车辆多了,也便出台了交通规则。从人的本性上来说,没有人喜欢被规则约束,人们更多的是对自由的渴望,对无拘无束的生活的向往;但是,没有规则约束的自由不是真正的自由,而是灾难。黄河因为有了堤岸的约束,才能展现它一泻千里、波澜壮阔的奔腾气势,成为哺育中华民族的母亲河,如果没有堤岸或堤岸决口,则会带来致命的洪灾。现代交通,有了合理的交通规则,且能严格遵守的话,才有高速行驶的畅快,才能给人类带来巨大的便利,反之,将引发巨大的灾难。所以,堤岸是河流的保护神,交通规则是驾驶员的保护神,校纪校规是学生的保护神,法律法规是我们所有社会人的共同的保护神。
一、说教材《道德与法治》课程是根据社会与时代发展的需要和儿童更好地适应学校生活,形成良好的品德和行为习惯,在充满探究与创造乐趣的童年生活中,为学会生活、学会做人打下基础。《玩得真开心》是统编《道德与法治》一年级上册第三单元《家中的安全与健康》为主题的第一课,其中又包含了四个内容:《放学回家玩什么》《这样玩好吗》《你会跟它们玩吗》《开个玩具交流会》。这四个主体各有侧重,又互相关联。本课内容设计充分考虑了小学生的需要和特点,以学校生活、家庭生活、社会生活为设计梯度,把健康、安全的生活作为儿童生活的前提和基础,使学生从小知道珍爱生命,养成良好的生活习惯,获得基本的健康意识和生活能力,初步了解人与环境生存的关系,为其一生身心健康的发展打下基础。其设计思想有三点:一是贴近学生的现实生活。放学回家为先,目的是联系学生生活实际,感受放学回家的喜悦心情,对熟悉的环境有美好的愿望,能想办法进行自己的游戏和活动,体会到生活的乐趣。同时巧妙地结合学生的生活环境,选择不同情境便于学生观察进行判断,意识到作为一个小学生应遵守的家庭、社会行为规则,进一步激发学生的学习兴趣,养成良好的健康生活习惯。二是有利于培养学生的主体意识。教材试图引导学生在课余生活和社会生活中,形成自我意识。
2、能仔细观察图片,能独立地找出不同的特征尝试进行分合。 3、乐于接受和尝试新的方法进行操作。 活动准备: 经验准备:幼儿已学习过7、8的组成。 物质准备: 教具:乌龟一家的图片(图上有7只乌龟,1只大乌龟,六只小乌龟,三只在岸上,四只在水里) 学具:《幼儿用书》(P7页)幼儿人手一支笔。 活动过程: ※乌龟一家出来玩 ——教师(出示一张“乌龟一家”的图片),今天天气真好啊,乌龟一家出来玩啦,看,这儿有几只乌龟?他们都一样吗?哪儿不一样啊? ——提醒幼儿先记录总数,再引导幼儿观察图上有的乌龟有什么相同与不同的地方。 ——教师:我们发现了许多不一样的地方,谁按这些不同把乌龟分成两组? ——幼儿思考并尝试将乌龟分成两组,说一说:大乌龟有几只,小乌龟有几只,根据大小特征,用分合式记录乌龟的数量。然后再找出一个不同点分一分并记录,如:按乌龟所在的位置不同,分为三只在岸上和四只在水里等。
二、社区卫生服务中心突发安全事故种类社区卫生服务中心突发安全事故含医院重大火灾安全事故,社区卫生服务中心重大交通安全事故,社区卫生服务中心重大危险药品安全事故,重大自然灾害事故,社区卫生服务中心重大特种设备安全事故,社区卫生服务中心外出大型活动安全事故,社区卫生服务中心外来暴力及医闹侵害事故等。三、社区卫生服务中心突发安全事故报告及处理程序1、实行社区卫生服务中心主要领导对事故报告的制度。2、社区卫生服务中心发生或接到突发安全事故报警后,随即启动应急预案,同时向区卫健局和安全监督部门报告,并及时向公安(消防)等相关部门报警请求援助。社区卫生服务中心本着“先控制,后处置,救人第一,减少损失”的原则,果断处理,积极抢救,指导患者离开危险区域,保护好社区卫生服务中心贵重物品,维护现场秩序,做好事故现场保护工作,上交社区卫生服务中心突发安全事故有关材料,做好善后处理工作。
一、说教材本节课教学是探索积的小数位数与乘法的小数位数的关系,教材在编排上体现了以下特点:1、“街心广场”教材创设了计算街心广场面积,花坛面积和每块地砖的面积等情景,在活动中引导学生观察三个长方形长、宽、面积之间的关系,使学生初步感知到小数乘法可以先按整数乘法计算,再来确定积的小数点的位置。2、教材还通过情境图引导学生从不同角度来探索地板砖面积,女少可以从前两个整数乘法算式的得数,推想出小数乘法得数;可以通过单位名称的转换推出得数。3、教材通过尝试练习:试一试和填一填的活动,使学生归纳出两个乘数一共有几位小数,积就有几位小数的规律,这些都能激起学生独立探索的热情和创新意识。教学目标:1、结合三个长方形面积关系,促能学生探索积的小数位数与乘法的小数位数的关系。
2022.01~2022.08 XXX软件有限公司 新媒体运营l 新媒体营销:负责构思并且制定品牌每季度、月度营销方案。对营销方案执行。l 品牌营销:配合品牌推广资源,合作资源,扩大内容影响力,配合产品运营的日常工作。l 内容运营:负责新媒体的内容发布、粉丝互动、话题制造、活动执行。快速响应市面热点事件,对微博、微信账号的关注度及内容效果。负责企业画册、季刊、第三方刊物等内容撰写与更新。l 数据分析:负责用户数据的分析,为运营提供数据支持。通过后台反映的用户数据,分析用户的浏览喜好、浏览时间、对运营策略作出调整。通过分析活动与渠道数据,对活动与渠道进行优化。
8、加强对音、体、美、等课程实施的监督与检查,确保上足课节。9、将学困生转化工作及优生培养工作落到实处。提高对学困生的关注度,加强对学困生的心理辅导及课业辅导。10、每周一次级部长会,每月一次学科长会,建立教务会议记录,学科教研、活动记录,教师上交材料记录。11、本学期共21周,实际授课17周。五、教学工作配档表九月1、划分班级,安排好教师课务,排好课程表。2、参加XX市教研室召开的小学教学教研工作会议3、安排各科教师参加XX市教研室组织的学科研讨。4、制定好各种教学、教研工作计划。5、安排并开展本学期公开课活动。6、印发各种表册。7、对小一新生建档。8、做好十一长假的作业布置工作十月1、组织学习烟台市小学教学常规、课程标准的学习。2、检查集体备课情况。3、进行书法、口算、口语表达技能比赛。4、积极准备上级的专项教学常规督导。5、积极打磨XX市学科优质课。
管得住自己,你是习惯的主人,管不住自己,你是习惯的奴隶。做主人,还是做奴隶全在于自己的选择。为了幸福,我们必须改掉身上的坏习惯。希望大家在好习惯的帮助下学有所成,寻找到自己的幸福。第二项:师生一起合唱《劳动最光荣》。教师结束语:在欢快的音乐中,我们的主题班会就要结束了。让我们把习惯的种子放在心里,让它在心中生根、发芽,收获一个美好的人生!五、说班会理念:养成教育要立足学生的生活实际,并服务于学生的生活。说得再多没用,重点是去行动,去做;只有实实在在的行动才能养成良好习惯。在本次班会中,我把课堂还给学生,让他们充分展示自我,充分发挥学生在课堂上的主体地位,调动学生的积极性,让学生全身心的投入到课堂中去,让学生即能得到思想的洗礼,又能得到能力的提高。以上是我对本节主题班会的设计的一些粗浅想法,不当之处还请各位评委、老师批评指正。
一、 学情分析根据新课程的核心理念:课程教学要以学生发展为本,让学生主主动参与是新课程实施的核心。所以我们要了解学生的基本情况。一方面:在高二阶段学生的思维能力从总体上看,正处于急剧发展、变化和成熟的过程中,他们急迫要去了解认识不断变化的社会。另一方面:此阶段的学生知识储备还不够、阅历浅,对于社会历史的发展还停留在感性认识的基础上,还没有上升到理性的高度。因此对其进行本框的教学很有必要。二、 教材分析俗话说,教材是老师的教本,学生的学本。所以正确理解教材,对其进行资源整合很有必要。(一)本框内容结构《社会历史的主体》是人教版新课程标准实验教材高中思想政治教育必修4生活与哲学第四单元《寻觅社会的真谛》第11课第2框的内容,本框题包括两目:人民群众是历史的创造者;群众观点和群众路线。
毒品损害健康,残害生命,对个人、家庭、社会的危害是巨大的。青少年正处于生理发育和心理发展的重要时期,心理防线薄弱,好奇心强、判断是非能力差,容易成为毒品侵袭的人群。据调查,在我国的吸毒中,35岁以下的青少年占80%以上。而且,近年来中小学生群体吸毒现象有所增加。特别是随着“摇头丸”的出现,青少年吸毒人数有进一步上升的趋势,吸毒年龄也更加“年轻化”。如果把毒品比做猛兽,那么它最容易下口的对象就是青少年;如果把毒品比做瘟疫,最容易感染的也是青少年。青少年一旦“染毒”,其身心健康受到的损害,远大于成人。
【教学目标】知识目标:理解直线的点斜式方程、斜截式方程、横截距、纵截距的概念;掌握直线的点斜式方程、斜截式方程的确定.能力目标:通过求解直线的点斜式方程和斜截式方程,培养学生的数学思维能力与数形结合的数学思想.情感目标:通过学习直线的点斜式方程和斜截式方程,体会数形结合的直观感受.【教学重点】直线的点斜式方程、斜截式方程的确定.【教学难点】直线的点斜式方程、斜截式方程的确定.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。