提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

镇乡村振兴2022年上半年工作总结和下半年工作计划

  • 感恩国旗下讲话稿:懂得感恩和尽孝

    感恩国旗下讲话稿:懂得感恩和尽孝

    伴随着寒假生活的结束,新的一年又开始了。回忆你的假期,你是否有值得回味的事情和经历呢?我想,不同的人肯定有不同的收获和感受。有的同学“收获”了胡吃海睡;而有的同学选择了认真完成寒假作业之余适当的放松;有的同学选择了一本好书,与心灵对话,让自己的精神旅行;有的同学利用丰富的网络资源来丰富自己的头脑,实现弯道超越。今天,我们又重返校园,在一个充满希望的早晨,怀着感恩的心情,庄严地注视着五星红旗冉冉升起,感谢伟大的祖国为我们提供了和平和富足,才使我们有了安心读书、幸福生活的环境。因为感恩才会有这庄严的时刻,因为感恩我们此时才会如此的肃穆!我们第六小学在沈玥校长“打造精小亮点,彰显个性魅力”理念引领下,整整八年,感恩教育贯穿学校工作始末,浓郁的“孝德”文化氛围已逐步形成。在这里,孝道和感恩充分融合。

  • 初二学生国旗下讲话稿:构建和谐校园

    初二学生国旗下讲话稿:构建和谐校园

    我是初二7班xxx,今天我讲话的主题是“构建和谐校园”。和谐是事物存在的最佳状态,也是一切美好事物的共同特点。实现和谐,是古往今来人类孜孜以求的美好理想和愿望。而调动一切积极因素构建和谐文明的校园环境也将是一个永恒的主题。构建和谐校园需建立和谐的师生关系。师者,传道授业解惑也,是老师给了我们文化知识的启迪,使我们从无知到有知,从幼稚走向成熟。老师给了我们知识的雨露,我们要全身心的接受,珍惜老师的付出,尊重老师的劳动。师生互敬互爱,从而打造和谐的学习氛围。构建和谐校园需建立建立和谐的同学关系。关心帮助有困难的同学,让他们感受到和谐校园的温馨。

  • 《牛和鹅》说课稿

    《牛和鹅》说课稿

    (我们马上都不说话了,贴着墙壁,悄悄地走过去。我吓得脚也软了,更跑不快。在忙乱中,我的书包掉了,鞋子也弄脱了。)

  • 人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(1)

    人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(1)

    本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1 两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。课程目标 学科素养1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 a.数学抽象:公式的推导;b.逻辑推理:公式之间的联系;c.数学运算:运用和差角角公式求值;d.直观想象:两角差的余弦公式的推导;e.数学建模:公式的灵活运用;

  • 人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(2)

    人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(2)

    本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用; 2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题.数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式; 2.逻辑推理: 运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。.

  • 软件正版化工作总结

    软件正版化工作总结

    通过以上工作的开展,我办软件正版化工作的推进取得了明显的成效,干部职工提高了对使用正版软件重要性的认识,增强了保护知识产权的化意识,确保了软件正版化管理制度的落实。二、2023年工作计划今后,我办将进一步做好软件正版化工作。一是坚决使用正版操作系统和办公软件,全力推动机关单位正版软件使用工作。二是加大软件正版化的宣传教育力度,提高机关工作人员对软件正版化工作的认识,促使工作人员自觉使用正版软件。三是建立软件正版化长效工作机制。我办将进一步完善正版软件采购工作机制,健全软件资产管理制度,建立正版软件安装使用台账,实现对正版软件采购、配置、升级、使用、处置等工作的动态监控管理。继续做好资金保障工作,严格按照软件正版化工作要求和实际使用需求,在年度经费预算和信息化项目建设经费中安排必要的软件采购资金。

  • 镇金属焊接切割作业专项整治工作总结

    镇金属焊接切割作业专项整治工作总结

    二是严格要求,强化整治。对建筑施工、机加工和铸造等重点金属焊接切割行业进行集中检查,消除安全隐患。三是积极组织培训,提高劳动技能。举办金属焊接切割作业人员培训班,组织无证作业人员参加培训,确保持证上岗。此次专项整治活动,我镇对辖区21家企业、19个行政村、7家建筑工地进行了全面的检查,共查出安全隐患31处,分别采取停止作业、调换工作岗位、参加培训等措施,督促责任单位改正。根据整改复查情况看,被查的企业均已积极行动起来,按要求进行了整改。存在的问题:常袋镇金属焊接切割作业企业规模比较小,数量多,其中新开工建设较多,劳动力招聘困难,部分企业为了赶工期,临时招聘或调换非焊接工作岗位未培训取证从事金属焊接切割作业现象时有发生,管理难度较大。

  • XX镇金属焊接切割作业专项整治工作总结

    XX镇金属焊接切割作业专项整治工作总结

    对建筑施工、机加工和铸造等重点金属焊接切割行业进行集中检查,消除安全隐患。三是积极组织培训,提高劳动技能。举办金属焊接切割作业人员培训班,组织无证作业人员参加培训,确保持证上岗。此次专项整治活动,我镇对辖区21家企业、19个行政村、7家建筑工地进行了全面的检查,共查出安全隐患31处,分别采取停止作业、调换工作岗位、参加培训等措施,督促责任单位改正。根据整改复查情况看,被查的企业均已积极行动起来,按要求进行了整改。存在的问题:常袋镇金属焊接切割作业企业规模比较小,数量多,其中新开工建设较多,劳动力招聘困难,部分企业为了赶工期,临时招聘或调换非焊接工作岗位未培训取证从事金属焊接切割作业现象时有发生,管理难度较大。

  • 人教版高中历史必修3文艺复兴和宗教改革说课稿2篇

    人教版高中历史必修3文艺复兴和宗教改革说课稿2篇

    师:在科学发展过程中,前一个理论体系的不完善之处,往往是新的研究和新的发现的突破口。开普勒之后,意大利天文学家伽利略创制了天文望远镜,用更加精确的观察继续发展和验证哥白尼创立的新天文学理论。除了用望远镜进行天文观察以外,伽利略还开始进行自然科学的实验研究,哪位同学能给大家讲一讲伽利略在比萨斜塔上所作的关于物体自由下落的实验?生:(讲述这一实验)师:所以,伽利略在科学方面更加重要的贡献是奠定了近代实验科学的基础。(2)实验科学和唯物主义师:伽利略从实践上开辟了实验科学的方法,而英国唯物主义哲学家培根则从理论上阐述了实验科学的方法——归纳法。培根和伽利略同被称为实验科学之父,培根还有一句影响深刻的名言:“知识就是力量”,表明了他注重知识,尊崇科学的精神。我们再来概括一下意大利哲学家布鲁诺的唯物主义思想,是否有同学可以简述布鲁诺的生平事迹?

  • 人教版高中历史必修3文艺复兴和宗教改革教案

    人教版高中历史必修3文艺复兴和宗教改革教案

    三、宗教改革:1、背景:(1)文艺复兴的影响。文艺复兴中,人文主义学者尽管对宗教保持较为温和的态度,但其以人为中心的思想极大地冲击了天主教的精神独裁,天主教的权威日益受到人们的怀疑。(2)天主教会对欧洲尤其是德意志的压榨。中世纪的天主教会对人民进行严密的精神统治,基督教信仰的核心是“原罪”和“灵魂救赎”,即人生下来就有罪,只有信仰上帝,跟随耶稣才能得救。就“灵魂救赎”而言,最初强调的是个人信仰的作用,后来,神学家们又加上了种种繁杂的宗教礼仪,而且必须得到神职人员的帮助,灵魂才能得救。在经济上,天主教会还是最大的封建主,占有大量的土地,并征收什一税,对各国人民大肆搜刮。罗马教廷每年从德意志搜刮的财富达30万古尔登(货币单位),相当于“神圣罗马帝国”皇帝每年税收额的20倍。德意志也成了被教会榨取最严重的地区,素有“教皇的乳牛”之称。

  • 人教版高中地理选修2浦东新区的规划和开发教案

    人教版高中地理选修2浦东新区的规划和开发教案

    1、图12.5“浦东新区的规划图”首先了解浦东新区的位置,浦东新区位于黄浦江东部,东临东海,北濒长江,面积广阔,地形平坦,和上海市繁华的外滩和南京路只有一江之隔;其次要了解城市规划的功能分区。2、图12.6“浦东新区图”图中可见已建成陆家嘴、张江、金桥、外高桥、孙桥等功能分区,理解浦东作为现代化城市新区的格局已基本形成。3、图12.8“浦东新区的产业结构图(1997年)”读此图应该明确,浦东新区国民经济的主要支柱是工业,第二产业占62.1%,比重最小的是第一产业,仅占0.8%,为充分发挥浦东新区的龙头作用,今后该区应继续把第二产业放在首要位置,成为上海市高新技术产业和现代工业的基地。【教学内容】一、浦东新区的开发条件和作用建设城市新区是上海市发展的必然选择,建设新城区首先要选择合适的区域。

  • 人教A版高中数学必修一对数函数的图像和性质教学设计(1)

    人教A版高中数学必修一对数函数的图像和性质教学设计(1)

    本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2、经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。

  • 人教A版高中数学必修二古典概型和概率的基本性质教学设计

    人教A版高中数学必修二古典概型和概率的基本性质教学设计

    新知讲授(一)——古典概型 对随机事件发生可能性大小的度量(数值)称为事件的概率。我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型。即具有以下两个特征:1、有限性:样本空间的样本点只有有限个;2、等可能性:每个样本点发生的可能性相等。思考一:下面的随机试验是不是古典概型?(1)一个班级中有18名男生、22名女生。采用抽签的方式,从中随机选择一名学生,事件A=“抽到男生”(2)抛掷一枚质地均匀的硬币3次,事件B=“恰好一次正面朝上”(1)班级中共有40名学生,从中选择一名学生,即样本点是有限个;因为是随机选取的,所以选到每个学生的可能性都相等,因此这是一个古典概型。

  • 人教A版高中数学必修二圆柱、圆锥、圆台和球的表面积与体积教学设计

    人教A版高中数学必修二圆柱、圆锥、圆台和球的表面积与体积教学设计

    1.圆柱、圆锥、圆台的表面积与多面体的表面积一样,圆柱、圆锥、圆台的表面积也是围成它的各个面的面积和。利用圆柱、圆锥、圆台的展开图如图,可以得到它们的表面积公式:2.思考1:圆柱、圆锥、圆台的表面积之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?3.练习一圆柱的一个底面积是S,侧面展开图是一个正方体,那么这个圆柱的侧面积是( )A 4πS B 2πS C πS D 4.练习二:如图所示,在边长为4的正三角形ABC中,E,F分别是AB,AC的中点,D为BC的中点,H,G分别是BD,CD的中点,若将正三角形ABC绕AD旋转180°,求阴影部分形成的几何体的表面积.5. 圆柱、圆锥、圆台的体积对于柱体、锥体、台体的体积公式的认识(1)等底、等高的两个柱体的体积相同.(2)等底、等高的圆锥和圆柱的体积之间的关系可以通过实验得出,等底、等高的圆柱的体积是圆锥的体积的3倍.

  • 人教版高中数学选择性必修二等差数列的前n项和公式(1)教学设计

    人教版高中数学选择性必修二等差数列的前n项和公式(1)教学设计

    高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数

  • 人教版高中数学选择性必修二等比数列的前n项和公式   (1) 教学设计

    人教版高中数学选择性必修二等比数列的前n项和公式 (1) 教学设计

    新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.

  • 人教版高中数学选择性必修二等比数列的前n项和公式   (2) 教学设计

    人教版高中数学选择性必修二等比数列的前n项和公式 (2) 教学设计

    二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和

  • 人教版高中数学选择性必修二等差数列的前n项和公式(2)教学设计

    人教版高中数学选择性必修二等差数列的前n项和公式(2)教学设计

    课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。

  • 在疫情防控最新进展情况通报和部署会上的讲话

    在疫情防控最新进展情况通报和部署会上的讲话

    严格防控疫情。一是严防疫情反弹外溢。我们对XX镇封控区、管控区及重点暴露场所进行严格管理,连续开展“扫楼敲门”行动,确保相关人员“足不出户”“足不出小区”,防止疫情在社区出现反弹。全市倡导非必要不离XX、非必要不出省。二是严防疫情倒灌。这是为了应对当前全国疫情发展出现的形势变化,我们正在加大力度推进的重要工作。重点是像排查出此次XX疫情首两例病例一样,迅速管控排查出涉疫地区来XX返XX人员,以免新的疫情发生。请广大市民朋友密切留意疫情发展动态,如非必要近期不要前往中高风险地区以及疫情发生地区;

  • 在疫情防控最新进展情况通报和部署会上的讲话发言.docx

    在疫情防控最新进展情况通报和部署会上的讲话发言.docx

    一、总体情况:全市疫情总体平稳可控。  12月26日0—24时,我市XX镇新增X例新冠肺炎确诊病例,在集中管理的密切接触者中检测发现。确诊病例XX,XX月XX日作为密切接触者被纳入集中管理,XX月XX日-XX日连续核酸检测阴性,XX月XX日晚核酸检测初筛阳性,XX月XX日复核结果阳性,已转运至定点收治医院隔离治疗,经诊断,为新冠肺炎确诊病例(轻型)。  12月13日至12月26日24时,我市累计报告新冠肺炎确诊病例XX例,均为轻型或普通型,全部都在XX镇,没有发生外溢。由于密切接触者等重点人群尚在医学观察期内,不排除还有续发病例的可能,昨天新增这X例也符合这一预判。目前,全市疫情总体平稳可控。

上一页123...878889909192939495969798下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!