
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35

【类型二】 根据不等式的变形确定字母的取值范围如果不等式(a+1)x<a+1可变形为x>1,那么a必须满足________.解析:根据不等式的基本性质可判断a+1为负数,即a+1<0,可得a<-1.方法总结:只有当不等式的两边都乘(或除以)一个负数时,不等号的方向才改变.三、板书设计1.不等式的基本性质性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变;性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;性质3:不等式的两边都乘(或除以)同一个负数,不等号方向改变.2.把不等式化成“x>a”或“x<a”的形式“移项”依据:不等式的基本性质1;“将未知数系数化为1”的依据:不等式的基本性质2、3.本节课学习不等式的基本性质,在学习过程中,可与等式的基本性质进行类比,在运用性质进行变形时,要注意不等号的方向是否发生改变;课堂教学时,鼓励学生大胆质疑,通过练习中易出现的错误,引导学生归纳总结,提升学生的自主探究能力.

方法总结:解题的关键是由题意列出不等式求出这个少算的内角的取值范围.探究点二:多边形的外角和定理【类型一】 已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正()A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】 多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是()A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.

解析:由分式有意义的条件得3x-1≠0,解得x≠13.则分式无意义的条件是x=13,故选C.方法总结:分式无意义的条件是分母等于0.【类型三】 分式值为0的条件若使分式x2-1x+1的值为零,则x的值为()A.-1 B.1或-1C.1 D.1和-1解析:由题意得x2-1=0且x+1≠0,解得x=1,故选C.方法总结:分式的值为零的条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.三、板书设计1.分式的概念:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有无意义的条件:当B≠0时,分式有意义;当B=0时,分式无意义.3.分式AB值为0的条件:当A=0,B≠0时,分式的值为0.本节采取的教学方法是引导学生独立思考、小组合作,完成对分式概念及意义的自主探索.提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程中获得了解决新知识的途径.在这一环节提问应注意循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成.

探究点二:列分式方程某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得20x+10x+4=15.故选A.方法总结:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.三、板书设计1.分式方程的概念2.列分式方程本课时的教学以学生自主探究为主,通过参与学习的过程,让学生感受知识的形成与应用的价值,增强学习的自觉性,体验类比学习思想的重要性,然后结合生活实际,发现数学知识在生活中的广泛应用,感受数学之美.

【类型三】 分式方程无解,求字母的值若关于x的分式方程2x-2+mxx2-4=3x+2无解,求m的值.解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的解法方程两边同乘以最简公分母,化为整式方程求解,再检验.2.分式方程的增根(1)解分式方程为什么会产生增根;(2)分式方程检验的方法.

把解集在数轴上表示出来,并将解集中的整数解写出来.解析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,再找出解集范围内的整数即可.解:x+23<1 ①,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式组的解集为-32≤x<1.则不等式组的整数解为-1,0.方法总结:此题主要考查了一元一次不等式组的解法,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、板书设计一元一次不等式组概念解法不等式组的解集利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的基础之上.解不等式组时,先解每一个不等式,再确定各个不等式组的解集的公共部分.

证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高

方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.

一、说教材本节课是北师大版小学二年级数学上册第六单元测量中第一课内容。课标要求经历“直接比较、运用非标准长度单位测量、运用标准长度单位测量”三个过程,这样可以帮助学生对标准长度单位的意义有充分的理解。本节课通过测量活动,让学生体会量的概念,为后续正式学习长度单位做好准备。二、学情分析学生在一年级时已经积累了比较直接长、短的活动经验,对长和短有了一定的认识,能想出很多测量的方法。但由于学生年龄小,引导学生小组内互助解决问题尤为重要。三、说教学目标1.知识目标:积累测量活动经验,发展度量意识和能力。2.能力目标:经历用不同方式测量教室长度的过程,体会测量方式、测量工具的多样性。3.情感态度价值观:在测量活动中培养学生互助、交流表达的能力。四、说教学重、难点教学重点:积累测量活动经验,发展度量意识和能力。教学难点:在测量活动中培养学生合作互助、交流表达的能力。

各位评委老师,大家好:今天我的说课内容是北师大版《义务教育课程标准实验教科书·数学》一年级下册第三单位《数花生》。下面我将从说教材、说教法学法、说教学课程、说板书设计四个方面来说课。【说教材】教材体现了数学与生活的密切联系,强调了从学生身边的事物出发去认识数。从学情分析,数数是学生普遍具有的生活经验和技能,所以对于100以内数的认识,学生并非完全陌生,以此为基础,让学生体会到数就是从我们的生活经验和常识中提炼和抽象出来的。本课的教学目标是:1、通过引导学生参与各种形式的教学活动,使他们感到一列数蕴含的规律;2、培养学生运用所学知识解决问题的能力,与人交流的能力;3、通过教学培养学生初步的意识,激发学生热爱数学的情感和学习数学的兴趣。

1、说教材:本节课是北师大版小学数学四年级下册第94-95页。猜数游戏是在学生已经学习了用字母表示数、方程、等式的性质等知识的基础上进行学习的。本节课主要学会用等式的性质解“ax±b=c”这样的方程,并能用方程解决简单的实际问题。教材通过笑笑和淘气猜数游戏,利用等量关系列出方程,重点是利用等式的性质解方程,能口头检验,形成检验的意识。本节课我通过游戏激发学生的兴趣,使学生体会方程的作用,并产生学习方程解法的愿望,为以后学习解方程、用方程思想解决问题打下重要基础。2、说教学目标:通过猜数游戏的这个情景,让学生会解形如“ax±b=c”的方程,并会简单应用,让学生在此过程中,体验解方程的思路,并掌握方法。在情感、态度、价值观方面,通过游戏,训练学生的数学思维能力,养成善于思考的习惯。3、说重、难点:本节课的重点是会解形如“ax±b=c”的方程,并会简单应用;难点是利用等式的性质解方程

2、求还剩多少枝要用什么方法来计算?(请几名学生说一说,再同桌互相说一说,在说的过程中掌握解决问题的方法)3、为什么用减法?你是怎么想的?(请几名学生说一说)师:你能根据要求列出算式来吗?(请学生在纸上列算式)(学生经过10以内的加减法的学习以及20以内进位加法的学习和长时间的培养,已经具备了根据数学问题列出式子的能力。因此学生根据问题,能很快的列出式子。)请学生回答。老师板书:15-9=(分析:1,“15,9”分别表示什么?)4、你是怎么来计算的(先让学生进行自主的探究,寻找计算方法。探究性学习必须要有独立思考的时间。由于学生的学习能力存在差异,对15-9的理解也存在不同,只有让学生经过独立思考,才能让他们真正的掌握知识。)

发展应用意识,运用所学知识解决两位数加减两位数(不进位,不退位)的计算方法。4、教学难点学生学会在理解图意的基础上,自己提出数学问题,引导学生尝试用自己的方法进行计算,体现算法多样化的思想,进一步体会加减法的意义。二、说教学法学生已有整十数加减整十数、两位数加减一位数(不进位、不退位)的知识作为基础,有一小部分学生在上学前已对竖式有简单的了解。对于看图编故事和从图中提出问题,前面的学习中已有过练习。这些都是本节课学生学习的前提条件。在本节课中,力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己提出问题,再自己想办法解决,并能以小组为单位共同合作完成;让学生亲自体验知识的形成过程,促进学生思维的发展。三、说教学流程(一)创设情境。

一、说教材分析《采松果》一课讲的主要内容是:两位数加、减一位数(不进位、不退位),是在学生熟练掌握20以内加、减法以及整十数加、减整十数的基础上安排的。教材内容分为两部分:一部分是教学两位数加一位数,另一部分是教学两位数减一位数。这两部分内容呈现在同一情境图——“采松果”中,创设了一个充满童趣的生活故事场景,引发学生在读懂图意的基础上,发现其中的数学信息,并能利用这些数学信息提出数学问题。二、说学情分析在学习本节课内容之前,学生已认识了100以内的数,掌握了20以内的加减法以及整十数加、减整十数的计算方法,对于加减法的意义有了一个基本的了解。另外经过上半学期的目标性训练,学生已具有了初步的合作交流意识和提出问题、解决问题的能力,能够有目的地进行探索性学习。但是,对于单纯的口算学习学生的学习兴趣并不是很浓,因此,激发学生的学习兴趣,使学生想学、乐学便显得尤为重要。

二、说学情学生有了前面学习的基础,课堂上尽可能放手让学生自主探索出两位数减两位数(不退位)的计算方法。关注学生竖式的书写。三、教学目标:1、学生在具体情境下,进一步体会加减法的意义。2、探索并掌握两位数减两位数(不退位)的计算方法3、初步学会应用加减法解决生活中的简单问题,感受加减法与日常生活的密切联系教学重点:本节课的重点是理解笔算两位数不退位减的算理,能正确用竖式计算。教学难点:理解两位数减两位数不退位减法的算理。三、精选教法。针对本节课抽象性较强,算理比较复杂,而一年级学生以形象思维为主,抽象思维相对较弱的特点,教学时应采用多种方法来激发学生兴趣,引导探究新知。教师主要采用:情境教学法、尝试教学法、讲授法、直观演示法、练习法等,并使这些方法相互交融,融为一体。

本课时教师根据教材内容,从学生的年龄特点及认知规律出发,精心设计“图书馆”这一问题情境,让学生在具体的情景中提出问题、解决问题、掌握算理,培养学生提出问题、分析问题、解决问题的能力。同时也培养学生的观察能力,激发学生的学习兴趣,使学生真正体会到生活中处处有数学、数学来源于生活。本课的教学目标是:1.在生动活泼的情境中,激发学生的学习兴趣,发展学生的思维能力,培养学生的合作意识和主动探索的精神。2.通过观察和操作等学习活动,使学生掌握100以内两位数加一位数进位加的计算方法,初步体会计算方法的多样化。3.感受数的计算与生活的密切联系,进一步体会加法的意义,培养观察、动手和运用数学解决问题的能力。本课的教学重点是:使学生理解并掌握一种适合他自己的算法,尤其是竖式计算的方法,正确计算100以内(两位数加一位数)的进位加法。教学难点是:理解不同算法的算理,尤其是满十进一的运算规律。

一、说教材(一)说教学内容我说课的内容是北师大版义务教育课程第八册第四单元“观察物体”一节,是一节新授课。(二)教材简析观察物体是在学生学习并掌握了“上下、前后、左右”位置关系的基础上安排的。通过这部分内容的教学,不但可以使学生能通过由低到高来观察物体的活动,从而体会到不同的位置看到的情景不一样,而且能通过由远到近看景物,能体会到看到的范围越来越小。(三)说教材重点和难点。教学重点:想象、判断观察到画面发生的相应变化,发展空间观念。教学难点:想象、判断观察到画面发生的相应变化,发展空间观念。二、说教学目标依照《新课程标准》的要求,结合教材和学生的特点,从知识、能力、情感态度三方面制定以下教学目标:1、通过引导学生参与各种形式的数学活动,使他们体验从不同的角度观察同一物体所看到的图形可能并不完全相同,领悟观察物体的方法,培养和发展学生的空间观念。2、培养学生运用所学知识解决实际问题的能力、与人交流的能力以及观察能力。

依照《新课程标准》的要求,结合教材和学生的特点,从知识与技能、过程与方法、情感态度与价值观三方面制定以下教学目标:1、经历搭立体图形的操作过程,体会必须根据立体图形的正面、上面和侧面(左面或右面)的形状特征,才能确定所搭的立体图形。结合搭立体图形的活动,进一步体验搭立体图形某一面(如正面)的形状,所搭的立体图形是不唯一的。2、在搭立体图形和观察立体图形的活动中,逐步发展空间观念以及观察和操作能力。3、让学生体验数学和生活的密切联系,培养同学之间合作的习惯。。三、说教法学法根据四年级学生心理、认知规律等特点,本节课准备主要采用观察法和动手法进行教学。注重从学生已有的经验出发,让学生在问题情境中主动地探究解决问题的方法,真正成为课堂的主人。

二、教学目标的确立教学目标根据学生的年龄特点、教学内容,我确定了如下的教学目标:1.结合解决问题的过程,初步理解同分母分数加减法算理,并能正确计算。2.能用同分母分数的加减运算,解决一些简单的实际问题。3.在动手操作中,激发学生学习兴趣,培养学生合作意识和勇于探索、自主学习的精神。三、教材处理本节课我充分尊重教材,将整节课至于生动的情境中,以观察思考、动手实践、合作交流为主要形式,使学生完成对知识的建构,同时感知数学与生活的联系。根据教学目标及学生的认识规律我确定了:教学重点:理解并掌握同分母分数加减法的计算方法,并能通过运算解决一些简单的实际问题。教学难点:解决“1减几分之几”的问题。四、教法学法教学中我采取“创设情境,自主探索,合作交流”开放式探究模式的教法,引导学生想学、乐学。创造主动参与,积极探究的氛围,让学生以动手操作,动眼观察、动脑思考、同桌互学,小组研讨、集体评论的学法,让学生全程参与到每个教学环节中来。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。