(一)城市建设气魄之大令人赞叹。昆山之行,我们深深地为其城市建设的大手笔、宽视野、科学性、前瞻性所吸引,为其建筑包罗万象、风格迥异、彰显特色、相互匹配所折服,为其坚持规划优先、高点定位、多措并举推进城市建设所震撼,与其说昆山是一座现代化都市,不如说是我国对外开放的一张名片。比如,在城市规划建设方面,昆山市敢于跳出昆山做规划,置身于长三角、全国乃至世界范围来定位,围绕“大城市、现代化、可持续”的总体要求,通过聘请国内知名设计公司甚至美国易道等国际大公司,对城市的总体发展规划、各片区详细规划及各专项规划,统盘考虑,一次成型,严格实施,确保了规划的先进性、指导性与严肃性。同时,按照“年年出精品、处处有亮点”的要求,每年都实施一批道路、桥梁等基础设施项目,以及体育场馆、文化广场、艺术中心等功能性项目,逐步建成了集健身、休、文化、展览、商业等多种功能于一体的市民文化广场,占地1.2万平米、全国县级市最先进的公共图书馆之一的昆山图书馆,占地1.6万平米、集中展示昆山经济社会发展成果的昆山科博馆,总面积50平方公里、现已位居中国10大最佳服务外包园区之一的花桥国际商务城特色建筑群等诸多城市亮点,目前全市城市化率已达到74%。在城市管理经营方面,昆山市坚持以“民生城管”的昆山城管品牌为抓手,把所有镇作为一级执行部门纳入数字城管范围,实行定点、定路段、定责任的分片包干责任制,在全国率先实现了一级指挥全覆盖。昆山市城管局每周都会确定一个重点整治的城市环境问题,集中力量予以解决,有力地保障了城市环境面貌整洁美化。同时,坚持把能推向市场的城市公用事业和基础设施全部推向市场,通过出售道路、桥梁、路灯等设施的冠名权、广告位、使用权等方式,达到以城养城、以设施养设施的目的。比如,正在推行的公共自行车服务项目,即由企业投资管理运营,政府花钱买服务,极大地方便了市民短途出行;即将建设的投资120亿元的市内高架桥项目,政府采用BT模式,由企业投资建设,政府根据回购协议分期支付建设资金,到期后投资人将高架桥移交政府。
在整个活动过程中,学生们的反应非常积极。他们通过分享,展示自己所学到的优秀榜样故事,表达了对榜样的敬仰之情。同时,他们也表示自己从榜样人物中受到很多启发和激励,激励他们在今后的学习和生活中树立自信、乐观、自我约束、自我激励的正确态度。对学生的影响观看《榜样》学习活动对学生有着积极的影响。首先,该活动可以使学生更加积极地参与到学习中,并提高对学习的热情和兴趣。其次,观看优秀榜样故事可以激发学生的道德感和社会责任感,提高他们的道德素质。最后,观看优秀榜样故事可以启示学生,并引导他们去学习优秀人物的品质和精神。结论观看《榜样》学习活动是一项非常有意义和有益的活动。通过学习榜样人物的先进事迹,可以提高学生的道德素质和行为规范,让学生在成长中更好地认识到一个人应该具备的优秀品质和精神。本次活动也受到了学生们的热烈支持,整个活动的开展取得了良好的效果。相信在今后的教育活动中,我们会继续探索和创新,让学生们在健康、愉快的学习氛围中茁壮成长。
五、严格查处有偿家教根据教育局规定,严禁教师从事有偿家教。除了会议上多次强调以外,我校教师还签订“关于拒绝有偿家教”的承诺书。同时,师德师风专项巡查和整治领导小组利用暑假期间,不定期深入群众中去,通过走访调查、实地考察等途径,实时掌握我校教师是否存在“有偿家教”的问题,一经发现,及时制止并汇报教育局。至今为止,我校并未发现有老师从事有偿补课的现象。总之,通过狠抓师德师风建设工作,使学校教师深深体会到:只有制度完善、加强过程管理,发现问题及时处理,才能保证师德建设有成效。这次暑期师德师风专项巡查和整治,以法制学习教育和组织教师进行自查为依托,以“以法治校”的制度管理、科学评估、重在激励为手段,形成良好的教师队伍,树立教师的职业道德形象。
1、八年级地理上册(湘教版)教材内容是中国地理为主,分为中国的疆域、中国的自然环境、中国的自然资源和中国的区域差异四大部分。八年级地理上册表现出对各种能力的培养,教材更多篇幅的图片和活动的训练。我国地域辽阔,资源丰富,但存在巨大的地域差异,这就需要在教学上处理好整体与差异的关系。 例如:我国的疆域面积居世界第三,但东西和南北都跨度很大,带来了冬季气候上的南北差异也带来了东西的时间差异。
活动准备 1、幼儿用书人手一册,人手一支笔。 2、2005年的挂历。 星期一~星期日的字卡共7章。 活动过程 一、集体活动 1、通过提问引出星期。 师:小朋友,你知道今天是几月几日吗?星期几?(幼儿回答)那你知道一星期有哪几天? 2、教师出示挂历(本年本月),引导幼儿观察,了解挂历内容。 (1)这是什么?上面有什么? (2)告诉幼儿这是今年的挂历,每一张表示一个月,这是几月份的挂历?这个月有几天呢?教师边指日期边带领幼儿念日期1-30。 (3)认识星期。认读汉字星期一到星期日。 (4)幼儿找一找1日在哪?教师用红笔圈起来。并引导幼儿向上看1日是星期几。 (5)请幼儿圈出今天的日期,再说说是星期几?
准备: 教具学具方面:星期转盘操作材料若干套(与幼儿的小组数相同)童话故事《星期妈妈和孩子们》 幼儿知识经验准备:学习另以内的序数和邻数,通过挂历、台历对“星期”时间概念有初步了解。 活动过程: 1、复习巩固:1——7序数,2——6邻数 (1)复习序数:出示1——7数字娃娃(排列无序),请幼儿帮组数字娃娃从小到大的顺序排队,并讲出第一、第二……第七各是哪个数字娃娃,老师出示大写数字表示。 (2)巩固邻数:以“数字娃娃找邻居”的游戏进行。 例如:老师以数字娃娃的口气问,我是2,我的邻居是几和几请小朋友帮助我,帮我找出好邻居。幼儿可回答二、二、二、你的邻居是一和三,一和三是你的好邻居。 2、新授:认识时间“星期”,了解其顺序性、周期性。
比如这个学期我要取得什么样的成绩,要完成哪些事情,这就是一个长期的目标,而这周乃至今天我该完成什么,这就是一个小目标。我们只有实现了一个个小目标后,才能实现大目标。很多同学有明确的目标,但学习不踏实,不严谨,不愿意学硬学,不花时间少学,不动脑筋浅学,考前搞搞突击;有的上课不听或干其它事,认为课后自己多花点时间也照样能学好,这些做法其实是不对的。
“我们D最大的政治优势是密切联系群众,执政后的最大危险是脱离群众。”要做到密切联系群众就要善于为群众服务,为群众解决生活中的实际困难,办好事实事。“四下基层”工作法正是按照把民情了解好、政策宣传好、群众服务好、矛盾化解好、工作落实好的目标要求,帮助群众解决生产生活中的具体问题,成为D联系群众、服务群众的重要渠道。进入新时代、互联网时代、后疫情时代,高校师生的民主意识、参与意识更加强烈,更喜欢用鲜明而直接的方式表达诉求、参与互动。针对这些新变化、新特点,高校宣传思想工作要坚持以人民为中心,站稳人民立场,秉持走好群众路线的态度,坚持“四下基层”工作法,深入基层、深入一线,访民意、察民情,及时了解师生所想所愿,着力在抓住重点难点、解决薄弱点上下功夫,开展面对面宣讲、心贴心宣传、点对点传播,通过事实与道理共同阐释的方式,向广大师生讲清楚“怎么看”“怎么办”,引导师生在纷繁复杂的社会思潮中坚定立场、明辨是非。同时,新时代高校宣传思想工作坚持以立德树人为根本,通过“四下基层”,到师生群众中间开展形式多样、特色鲜明的社会主义核心价值观宣传教育活动以及丰富多彩的文化活动,为基层师生输送接地气、有温度、感染力强的宣传文化作品,满足师生多层次和多样化的精神文化需求,可以有效增进师生的获得感和幸福感,引导师生将社会主义核心价值观转化为情感认同和行为习惯。
一、教学目标(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.(三)学科渗透点通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.二、教材分析1.重点:抛物线的定义和标准方程.2.难点:抛物线的标准方程的推导.三、活动设计提问、回顾、实验、讲解、板演、归纳表格.四、教学过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.首先,利用篮球和排球的运动轨迹给出抛物线的实际意义,再利用太阳灶和抛物线型的桥说明抛物线的实际用途。
教学目的:理解并熟练掌握正态分布的密度函数、分布函数、数字特征及线性性质。教学重点:正态分布的密度函数和分布函数。教学难点:正态分布密度曲线的特征及正态分布的线性性质。教学学时:2学时教学过程:第四章 正态分布§4.1 正态分布的概率密度与分布函数在讨论正态分布之前,我们先计算积分。首先计算。因为(利用极坐标计算)所以。记,则利用定积分的换元法有因为,所以它可以作为某个连续随机变量的概率密度函数。定义 如果连续随机变量的概率密度为则称随机变量服从正态分布,记作,其中是正态分布的参数。正态分布也称为高斯(Gauss)分布。
教学准备 1. 教学目标 知识与技能掌握双曲线的定义,掌握双曲线的四种标准方程形式及其对应的焦点、准线.过程与方法掌握对双曲线标准方程的推导,进一步理解求曲线方程的方法——坐标法.通过本节课的学习,提高学生观察、类比、分析和概括的能力.情感、态度与价值观通过本节的学习,体验研究解析几何的基本思想,感受圆锥曲线在刻画现实和解决实际问题中的作用,进一步体会数形结合的思想.2. 教学重点/难点 教学重点双曲线的定义及焦点及双曲线标准方程.教学难点在推导双曲线标准方程的过程中,如何选择适当的坐标系. 3. 教学用具 多媒体4. 标签
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 8.4 圆(二) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内直线与圆的位置关系有三种(如图8-21): (1)相离:无交点; (2)相切:仅有一个交点; (3)相交:有两个交点. 并且知道,直线与圆的位置关系,可以由圆心到直线的距离d与半径r的关系来判别(如图8-22): (1):直线与圆相离; (2):直线与圆相切; (3):直线与圆相交. 介绍 讲解 说明 质疑 引导 分析 了解 思考 思考 带领 学生 分析 启发 学生思考 0 15*动脑思考 探索新知 【新知识】 设圆的标准方程为 , 则圆心C(a,b)到直线的距离为 . 比较d与r的大小,就可以判断直线与圆的位置关系. 讲解 说明 引领 分析 思考 理解 带领 学生 分析 30*巩固知识 典型例题 【知识巩固】 例6 判断下列各直线与圆的位置关系: ⑴直线, 圆; ⑵直线,圆. 解 ⑴ 由方程知,圆C的半径,圆心为. 圆心C到直线的距离为 , 由于,故直线与圆相交. ⑵ 将方程化成圆的标准方程,得 . 因此,圆心为,半径.圆心C到直线的距离为 , 即由于,所以直线与圆相交. 【想一想】 你是否可以找到判断直线与圆的位置关系的其他方法? *例7 过点作圆的切线,试求切线方程. 分析 求切线方程的关键是求出切线的斜率.可以利用原点到切线的距离等于半径的条件来确定. 解 设所求切线的斜率为,则切线方程为 , 即 . 圆的标准方程为 , 所以圆心,半径. 图8-23 圆心到切线的距离为 , 由于圆心到切线的距离与半径相等,所以 , 解得 . 故所求切线方程(如图8-23)为 , 即 或. 说明 例题7中所使用的方法是待定系数法,在利用代数方法研究几何问题中有着广泛的应用. 【想一想】 能否利用“切线垂直于过切点的半径”的几何性质求出切线方程? 说明 强调 引领 讲解 说明 引领 讲解 说明 观察 思考 主动 求解 思考 主动 求解 通过例题进一步领会 注意 观察 学生 是否 理解 知识 点 50
本人所教的两个班级学生普遍存在着数学科基础知识较为薄弱,计算能力较差,综合能力不强,对数学学习有一定的困难。在课堂上的主体作用的体现不是太充分,但是他们能意识到自己的不足,对数学课的学习兴趣高,积极性强。 学生在学习交往上表现为个别化学习,课堂上较为依赖老师的引导。学生的群体性小组交流能力与协同讨论学习的能力不强,对学习资源和知识信息的获取、加工、处理和综合的能力较低。在教学中尽量分析细致,减少跨度较大的环节,对重要的推导过程采用板书方式逐步进行,力求让绝大多数学生接受。 1.理解椭圆标准方程的推导;掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标. 2.通过椭圆图形的研究和标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用。 1.让学生经历椭圆标准方程的推导过程,进一步掌握求曲线方程的一般方法,体会数形结合等数学思想;培养学生运用类比、联想等方法提出问题. 2.培养学生运用数形结合的思想,进一步掌握利用方程研究曲线的基本方法,通过与椭圆几何性质的对比来提高学生联想、类比、归纳的能力,解决一些实际问题。 1.通过具体的情境感知研究椭圆标准方程的必要性和实际意义;体会数学的对称美、简洁美,培养学生的审美情趣,形成学习数学知识的积极态度. 2.进一步理解并掌握代数知识在解析几何运算中的作用,提高解方程组和计算能力,通过“数”研究“形”,说明“数”与“形”存在矛盾的统一体中,通过“数”的变化研究“形”的本质。帮助学生建立勇于探索创新的精神和克服困难的信心。
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x 的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际问题。重点:常见幂函数的概念、图象和性质;难点:幂函数的单调性及比较两个幂值的大小.
《基本不等式》在人教A版高中数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。2.经历基本不等式的推导与证明过程,提升逻辑推理能力。3.在猜想论证的过程中,体会数学的严谨性。数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值;4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.
本节课选自《普通高中课程标准数学教科书-必修一》(人 教A版)第五章《三角函数》,本节课是第1课时,本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念以及终边相同的角的表示法。树立运动变化的观点,并由此进一步理解推广后的角的概念。教学方法可以选用讨论法,通过实际问题,如时针与分针、体操等等都能形成角的流念,给学生以直观的印象,形成正角、负角、零角的概念,明确规定角的概念,通过具体问题让学生从不同角度理解终边相同的角,从特殊到一般归纳出终边相同的角的表示方法。A.了解任意角的概念;B.掌握正角、负角、零角及象限角的定义,理解任意角的概念;C.掌握终边相同的角的表示方法;D.会判断角所在的象限。 1.数学抽象:角的概念;2.逻辑推理:象限角的表示;3.数学运算:判断角所在象限;4.直观想象:从特殊到一般的数学思想方法;
学生在初中学习了 ~ ,但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入初中对角的定义是:射线OA绕端点O按逆时针方向旋转一周回到起始位置,在这个过程中可以得到 ~ 范围内的角.但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.
知识探究(一):普查与抽查像人口普查这样,对每一个调查调查对象都进行调查的方法,称为全面调查(又称普查)。 在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体。为了强调调查目的,也可以把调查对象的某些指标的全体作为总体,每一个调查对象的相应指标作为个体。问题二:除了普查,还有其他的调查方法吗?由于人口普查需要花费巨大的财力、物力,因而不宜经常进行。为了及时掌握全国人口变动状况,我国每年还会进行一次人口变动情况的调查,根据抽取的居民情况来推断总体的人口变动情况。像这样,根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和判断的方法,称为抽样调查(或称抽查)。我们把从总体中抽取的那部分个体称为样本,样本中包含的个体数称为样本量。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。