(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。
已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
我说课的内容是人教版小学数学四年级上册第一单元第21页的内容——《亿以上数的认识》。下面我将从说教材、说目标、说教法和学法、说教学程序、课堂回眸五个方面进行阐述。一、说教材《亿以上数的认识》,是在学生认识和掌握万以内数的读法和写法基础上学习的。也是为进一步学习亿以上数的写法打基础。生活中大数广泛存在,亿以上数的认识既是万以内数的认识的巩固和拓展,也是学生必须掌握的最基本的数学基础之一。通过地球不堪人口之重负的拟人素材,生动地引入世界人口总数,让学生感受大数、学习亿以上数的读法的同时了解到地球上人口太多了,如不控制将要威胁到人类的生存环境,渗透有关人口知识和环境保护教育。二、说目标(基于对教材以上的认识及课程标准的要求,结合学生的年龄特征,将本节课的教学目标为:)
二、教学目标:1、使学生能够运用“四舍”、“五入”的试商方法,正确地计算除数是两位数、商是一位数的笔算除法.初步掌握试商调商的方法。2、培养学生估算能力,培养学生自主观察、分析、归纳及综合运用知识的能力。3、激发学生自己探求知识的欲望,培养学生自主学习的精神,在学生讨论和交流中,促进学生之间在交流中合作精神,激发学生对数学学习的兴趣.三.教学重点:掌握用四舍五入法试商的方法并熟练地试商教学难点:掌握四舍五入试商的方法四、说教法、学法。著名的教育家叶圣陶说过:教学有法,教无定法,贵在得法。本节课我利用情境、生活经验等多种方法,使学生变苦学为乐学。学生是学习是主体,学生的参与状态、参与度是决定教学效果的重要因素。引导学生“观察、对比、总结等多种方式进行探究性学习活动。
2、十进制计数法(1)、师提问:“同学们,我们在前几节课已经学习了到万级为止的数,但是,还有比亿更大的数存在着,(出示数位顺序表):引导学生利用已有的知识进行类推,将已学过的亿以内数位顺序表扩展到“千亿”。教师在计数器上现场贴上亿级的数位。(教师向学生说明:还有比千亿更大的数,由于不常用,暂时不学,因此在数为顺序表后面用“…”,表示后面还有其他数位。)(2)、教师提问:“那么,我们已经学习了哪些计数单位呢?”(3)、小组讨论:“每相邻的两个计数单位之间的进率是多少?”请同学们自己得出结论:每相邻的两个计数单位之间的进率都是十。最后,教师给出“十进制计数法”的名称,在黑板上板书。(三)、课堂总结1、教师:“同学们,今天我们一起学习了?”教师请同学们接下去说完整:“自然数和十进制计数法。”
一、创造性地使用教材。上课前,我就布置了学生收集相关的“数”的产生的资料,初步感知“数”的产生历史及变化过程;上课后,我将数位的产生融入“数的产生”这样大的背景中,使学生感受数学王国的博大与神奇。二、把学习的主动权利教给学生,放手让学生去探索、去发现,给予学生思维的空间。如:我在教学“探索十进制计数法”一节时,给学生提供一张不完整的数位顺序表,让学生填写完整并说出依据。学生通过自己动脑思考、动手填写,就会发现“相邻两计数单位间的进率都是十”,既而明白:相邻两单位进率是十的计数法就是十进制计数法,课堂效果十分明显。三、困惑与反思:本节课对十进制计数法教学法的设计虽然取得了较明显的效果,但对于“数位”、“位数”、“计数单位”这些概念该不该讲?怎样讲才能让学生理解得更透彻,我感到困惑。
本单元教学内容是亿以内数的读法和写法.教材是在学生学习了万以内数的读法和写法,已经掌握了“个”、“十”、“百”、“千”这几个计数单位,并且会正确地读写万以内数的基础上,把计数单位扩展到“亿”,再分别学习万级数的读法和含有两级的数的读法,万级数的写法和含有两级数的写法,最后学习比较数的大小,把整万的数改写成用万作单位的数,以及用“四舍五入”法把一个亿以内的数改写成用万作单位的近似数.通过本单元的教学,使学生能够按照四位一级的计数特点正确读、写亿以内的数.帮助学生建立较完整的计数知识体系.为进一步学习亿以内加法和减法,乘数和除数是三位数的乘法和除法打下基础.本单元教学重点是万级数的读法和写法,培养学生运用迁移、类推的方法获取新知,并进一步培养学生的分析、综合能力.
二、数数活动,认识“十万”。1、用多媒体出示课本第2页第一幅图,让学生看图数一数共有多少个?再让学生在计数器上拨一拨,并写出这个数。(说明:第一个数一数活动是使学生回顾万以内数的认识,引出“个”“十”“百”“千”的数学模型小方块和计数器。)2、用多媒体出示第二幅图,(学生:哇,好多啊!)师:你能数一数一共有多少个吗?(大部分学生会感到困难)3、运用第一个数数活动中:一个大正方体是“一千”的数学模型,指导学生用100张“一千”的卡片来代替摆一摆、数一数。4、全班交流,逐步引导出先数出一万,然后一万一万来数的方法。(说明:在课堂教学中不可能直接让学生数这么多的小方块,所以我让学生制作了100张“一千”的卡片代替来完成这第二个数一数活动,从而让学生有了“10个一万是十万”的直观体验!)
一、说教材:本节课是人教版义务教育课程标准实验教科书四年级数学上册第一单元《亿以内数的认识》里的例题4。本节课的内容是在数数、读、写数以及10000以内数大小比较的基础上进行教学的。教材一开始就联系生活,通过比较我国面积最大的六个省份的大小,引导学生讨论比较数的大小的方法。然后,教材设计了一系列不同层次的练习,意在巩固和发展学生比较数的大小的能力。这堂课我通过小组活动,使学生在“活动”中学数学,归纳总结出亿以内数位数相同和位数不同的数的比较大小的方法,为学生以后学习更大的数比较大小打下了坚实的基础。二、学情分析:本课教学对象是四年级学生,其思维特点是以具体形象思维为主,因此我把“亿以内数的大小比较”这一知识,溶合在学生所进行的“抽数比大小”活动之中,让学生在活动中掌握亿以内数的大小比较的方法。
(三)通过观察,找出规律教师可以这样设计,用计数器演示,个级的各个数位,然后让学生观察找出万级的计数单位,学生很快从中找出万级的计数单位,知道万位、十万位、百万位和千万位,这时为了加深对本节课内容的理解,可以通学习例1和例2的内容。学习例1,教师出示例题内容:470000、3080000、40500000。为了让学生直观地看出以上数所占的数位,可以用计数来帮助,把相应数位相互对齐。学生经过观察可能发现其中的道理,以470000为例,4对应十万位、7对应万位、后面全部是0,学生很快读出这个数,读作47万。用相似的方法来学习其它内容,学生会总结出这些数的读法。接着学习例2,情况和教学内容虽然稍有不同,但经过教师适当地引导,学生肯定能够掌握,由于方法相似,在这里就不展开讨论。通过以上两个例题的学习,学生应该明白了亿以内数的读法了,不过由于0在各种情况下出现,其也有不同的读法,教师要引导学生弄清在何种情况下如何读中间有0或未尾有0的数,这是本课学习的重点与难点,必须让学生掌握。
(一)说教材《百分数的一般应用题》是在学生学过用分数解决问题和百分数的意义、百分数和分数、小数的互化的基础上进行教学的。主要内容是求常见的百分率,也就是求一个数是另一个数的百分之几的实际问题,这种问题与求一个数是另一个数的几分之几的问题相同。所以求常见的百分率的思路和方法与分数解决问题大致相同。通过这部分教学,既加深了学生对百分数的认识,又加强了知识间的联系。这部分教材在安排上有以下一些特点:1、从学生已有的知识和生活经验出发,帮助学生理解数学。2、设置数学活动生活情境,培养学生的解决问题意识和探究精神。(二)说学生对学生来说,利用已有的知识和生活经验,依据数量关系列式解答并不困难,但要求学生找准谁和谁比,很重要。二、说教学目标与重难点根据以上分析,我确定了本节课的教学目标如下:1、使学生加深对百分数的认识,理解生活中的百分率的含义,掌握求百分率的方法。2、依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识3、让学生在具体的情况中感受百分数来源于生活实际,在应用中体验数学的价值。重点:解答求一个数是另一个数的百分之几的应用题。
1、说内容:百分数的意义和写法是人教版义务教育课程标准实验教科书六年级数学上册第五单元的内容。2、说教材:这部分内容是在学生学过整数、小数特别是分数的意义和应用的基础上进行教学的。百分数的意义和写法是本单元的基础,学生只有理解了百分数的意义,才能正确地运用它解决实际问题。二、学情分析:百分数对于六年级学生来说并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数意义的理解还不十分准确,学生极易把百分数等同于分母是100的一般分数。因此教学中如何激活学生的相关经验,及时引导学生理解百分数和分数的联系与区别,让学生完成百分数意义的建构,显得尤为重要。三、教学目标:1、知识与技能:让学生经历从实际问题中抽象出百分数的过程,体会引入百分数的必要性,理解百分数的意义,会正确读写百分数。