一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
教材分析:《小鸟小鸟你真好》是省编教材大班上学期中的一首歌曲,是一首优美、抒情、动听,充满爱的歌曲,它描述了老鸟为了小鸟辛苦了一辈子,现在老了,行动方面已经不方便,再去捉虫真的很困难,造成了生活上的问题。小鸟长大了,懂得了老鸟的困境,不怕辛苦,总是照顾着老鸟,每次捉虫的时候,总是让老鸟先吃饱。体现了小鸟尊敬长辈,照顾长辈的美德。歌曲是2/4拍节奏。我们知道,节奏是音乐要素之一。因此,知识点是2/4拍节奏的强弱特点。歌曲还运用了领唱、齐唱的方法,表现了老鸟和小鸟的情感;还运用了两个间奏以及多处付点音符,掌握好这些知识点,为整个教学活动的开展奠定了基础。
幼儿园健康应该教什么?怎么教?这个问题一直困惑着我们幼教工作者。如今的新《纲要》中为我们指引了方向,它不仅指出:“幼儿园必须把保护幼儿的生命和促进幼儿的健康放在工作的首位。”同时还强调“要密切结合幼儿的生活进行安全教育,提高幼儿的自我保护能力。”本次活动源于一个偶然:上星期五钮老师给了我一本有关消防知识的书,当时诸老师在我身边,她打开书一看说:“这本书挺好的,里面的知识很丰富,可以将这些消防知识贯穿在平时的教学活动中。”我听了当时头脑里产生了这样一种想法:以“消防”为主题设计一个教学活动。因为消防知识与我们的生活息息相关、紧密联系,设计这样一个活动不仅可以教给幼儿一些基本的防火、救火常识,而且贴近幼儿生活孩子们比较感兴趣。这学期我们中班健康领域的活动主题是:“利用自制教玩具,让幼儿在生动有趣、形式多样的活动中获得发展。”
音乐游戏多种多样,有纯粹在歌声中活动的,还有纯粹在乐曲声中活动的,有些是有情节、有角色的音乐游戏,内容繁简不一,然而小班幼儿年龄小,一切从兴趣出发。兴趣能诱发幼儿学习的动机,调动幼儿学习的积极性、主动性、创造性。另外喜欢游戏是幼儿的天性,幼儿在音乐游戏时与同伴交流情感,孩子们在这种耳鬓厮磨的互动中还可以建立信任、了解和友谊,形成一个相互学习、开放的学习环境, 因此音乐游戏在幼儿学习的过程中具有特殊作用。小猫和小老鼠是幼儿非常熟悉的两个动物形象,幼儿很喜欢,尤其是出现了动画片《猫和老鼠》,孩子们更是对小老鼠的聪明、可爱形象喜欢的不得了,因此我选了这个音乐游戏《小老鼠吃米》,在这个音乐游戏中,我让幼儿在玩中学,学中玩,充分利用幼儿的好奇,在玩游戏的过程中逐步出现游戏规则,使幼儿自始至终保持极高的兴趣,掌握游戏。
小青蛙听故事夜,静悄悄的,月亮来到小河边,瞧瞧小鱼儿有没有睡觉。小鱼儿看见月亮,可高兴了!一群小鱼儿围着月亮听故事,月亮给小鱼儿讲故事。小鱼儿安安静静地听呀、听呀。忽然,从草丛中蹦出来一只小青蛙。小青蛙叫道:“呱呱呱,我也要听故事。”小鱼儿对小青蛙说:“别吵,听故事要安安静静的。”小青蛙不理睬小鱼,还在“呱呱呱”地又蹦又叫。月亮生气了,皱起眉头,躲进了云朵里。小鱼儿也钻进水草里不见了。小青蛙知道自己错了,忙说:“对不起,我错了,我会安安静静地听故事的。小鱼儿、月亮快出来吧!”小青蛙蹲在荷叶上,睁着大眼睛,一声不吭。月亮钻出云朵,露出了笑脸。小鱼儿也游回来了。月亮又接着给小鱼儿和小青蛙讲好听的故事了。
《小苹果的邻居》这个故事选自小班下学期,《相亲相爱》这一主题中。随着人口的不断增长,人们生活的密集程度远远超出以前人们的想像,但匆忙的生活状态,闭塞的居住空间,却疏离了人际关系,邻居之间也不如四合院里来得融洽。可邻居,是在我们社会生活中必不可少的成员。俗话说“远亲不如近邻”,邻居之间友好的关系是非常重要的。这个故事就表现了一个名叫“小苹果”的小朋友与周围邻居为准备跳蚤市场的热闹场面,非常愉快和温馨。对于小班幼儿来说,虽然他们家附近也有邻居,也常常和邻居打招呼或者偶而游戏,但对“邻居”一词接触少,什么样的才算是邻居呢?所以我觉得这个故事既符合小班幼儿年龄特点,又符合孩子的现实需要,因此,我选择这个故事,并将它与语言和社会两个领域相结合。
再来谈谈活动内容与活动主体(即幼儿)之间的适应性关系。《纲要》中指出:幼儿是教育活动的积极参与者而非被动接受者,活动内容必须与幼儿兴趣、需要及接受能力相吻合。因此,正确掌握幼儿年龄阶段目标和幼儿近期发展情况,是每位教师设计和组织活动的必要前提。还记得这个学期,我刚接任小四班,第一次给他们上美术课时,竞然有大部分的孩子举着水彩笔对我说,“老师,我不会画!”到底是什么原因,让这些天真无邪的孩子会“无从下笔”呢。我想,主要应该取决于成人对待幼儿美术活动的态度。首先是教师,直接参与活动的组织实施和评价,可能是孩子们眼中的“权威”。那么,教师能否深刻理解和贯彻《纲要》精神,对孩子的发展就至关重要!《纲要》中明确指出:“要避免仅仅重视表现技能或艺术活动的结果,而忽视幼儿在活动过程中的情感体验和态度的倾向。”“教师的作用应主要在于激发幼儿感受美、表现美的情趣,丰富他们的审美经验,使之体验自由表达和创造的快乐。”根据这些精神,我在平时的美育活动中,就有意收集一些简单而有易于幼儿表现的教材,就像今天设计的这节“手指点画”课,没有特别难的技能技巧需要掌握,大部分幼儿都能通过动手操作而体验到成功的快乐。并且在轻松自由的创作中,丰富了他们的情感体验,这就是我设计这节课的初衷。
1、出示一对笑嘻嘻的小鞋,一对生气的小鞋,引起幼儿的兴趣。师:小朋友,你们看这是什么呀?它们怎么了?你们知道它们为什么不高兴?为什么高兴呢?请幼儿自由发言。2、教师引导幼儿发现一双鞋穿对了,小鞋高兴;一双鞋穿反了,小鞋不高兴,教师并启发幼儿说出小鞋穿对了时是碰碰头,小鞋穿反了时歪歪头不高兴。师:刚才小朋友都说得非常好,现在我们听一听小鞋朋友是怎样说的,进一步巩固对鞋子反正的认识。教师边演示边引导幼儿听配乐儿歌《小脚找朋友》(两只小鞋,一对朋友。穿对高兴,微笑碰头。穿错生气,噘嘴歪头。)使幼儿明确判断小鞋穿对穿错的办法是看看小鞋是碰头还是歪头。3、游戏:给鞋样配对教师将不同颜色大小的鞋样摆放在一起,请幼儿从中找出一双鞋样进行操作,教师适时引导,用儿歌的关键话语“噘嘴歪头,微笑碰头”来帮助幼儿学会分辨鞋样的正确摆放方法。教师将对能力弱的幼儿给予帮助鼓励。
《能干的小手》是省编教材小班上学期主题六《我自己》中的一个活动内容,我选择本活动是由于:1、小班幼儿已具有初步的自我意识,对身体各器官逐步产生探索兴趣。然而,幼儿对身体器官的认识还很肤浅,爱护身体、保护自己的经验又比较缺乏,此活动的进行,可以使孩子认识自己的小手,知道小手的用处,对自己的小手感兴趣并萌发保护小手的意识。2、现在的独生子女是在衣来伸手,饭来张口的环境中长大的,家长包办替代和过度宠爱使孩子失去一些自我服务的机会,通过此活动能使孩子认识到自己的小手很能干,激发幼儿自己的事情自己做的愿望,培养幼儿的自理能力。3、本活动灵活性强,不受季节、时间、环境的限制。根据幼儿的年龄特点和现有水平,我确定本活动的目标为:(1)激发幼儿自己的事情自己做的愿望。(2)引导幼儿认识自己的小手,知道手能做许多事情。(3)帮助幼儿初步掌握保护手的方法。
日趋严重的白色污染正不断的威胁着人类及其它生物的生存环境,尤其是占据半壁江山的难降物塑料袋,已日益引起了人们的关注。2008年伊始,国务院办公厅下发《关于限制生产销售使用塑料购物袋的通知》,指出自2008年6月1日起,在全国范围内禁止生产、销售、使用厚度低于0.025毫米的塑料购物袋。作为现实生活中的普通人,虽然不可能都直接从事环保工作,但作为老师的我们应该用各种方式让幼儿获得正确的体验,让他们深入了解塑料袋,了解此政策的重要意义,毕竟幼儿是未来的主力军,让他们成为环保的宣传者、执行者,并将良好的习惯泛化到周围人身上,并从中找到快乐。
一、导入新课上课,同学们好!今天的美术课和平时有点不一样,主要有两个方面,其一、教室里来了许多老师和我们一起来上这一堂美术课,大家用掌声表示欢迎。其二、就是唐老师为大家带来了一位小伙伴,同学们肯定会喜欢上它的,大家看,它来了--展示课件动画图片和播放声音,出现一个小圆点,(说话:同学们,大家好!我的名字叫小圆点,我喜欢穿各种色彩的衣服,我的本领可大啦!能大能小,位置和大小的变化还能给人产生不一样的感觉!在生活中和美术作品中经常可以见到我的身影!大家都称我为魅力的小圆点呢!)
2学情分析四年级的学生正处于素质教育的阶段,学生对美术正逐步深入了解,并掌握了一些美术基础知识和基本技能,多数同学对美术兴趣浓厚,有较强的求知欲和教强的创新力,学生的美术素质得到进一步提高。3重点难点教学重点:让学生从大自然和生活的万物中发现线条的几种变化,发现圆点在纸上的不同位置产生的不同感觉。
2重点难点教学重点第一课时:了解绘画故事的表现特点,感受真、善、美。第二课时:绘画自编故事的创作特点及步骤。教学难点第一课时:选材、构思设计。第二课时:构图与绘制3教学过程3.1 第一课时教学活动活动1【导入】“连连看” 教师提供数张图片和几句话(或几段文字),请学生根据文字找到相应的图画将它们连起来,并找出先后顺序将故事讲完整。教师小结,出示课题《图文并茂》。设计意图:以游戏的形式“连一连”,激发学生的好奇心和兴趣,以饱满的热情投入学习内容——图文并茂。
2学情分析本课属于“造型.表现”,学习领域。可爱幽默的动漫形象渗透了具象的造型知识,培养了学生的创新精神,丰富着孩子们的美好童年回忆。本课介绍了几种不同表现形式的动漫形象。联系生活原型与动漫形象,告诉学生动漫形像来源于现实生活,并通过文字和示范讲述动漫行象的造型手法(拟人化、变形、夸张等),引导学生大胆绘制简单的动漫形象。3 重难点1、教学重点:让学生了解动漫的风格,主要的设计手法,激发学生丰富的想象力,绘制出幽默、夸张、富有童趣的动漫形象。2、教学难点:让学生运用拟人、夸张、添加、变形、写实等方法,画出动漫形象
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。