提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

小学美术人教版二年级上册《第9课蜻蜓飞飞》教案说课稿

  • 点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.

  • 两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.

  • 两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.

  • 倾斜角与斜率教学设计人教A版高中数学选择性必修第一册

    倾斜角与斜率教学设计人教A版高中数学选择性必修第一册

    (2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).

  • 两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]

  • 圆的标准方程教学设计人教A版高中数学选择性必修第一册

    圆的标准方程教学设计人教A版高中数学选择性必修第一册

    (1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.

  • 圆的一般方程教学设计人教A版高中数学选择性必修第一册

    圆的一般方程教学设计人教A版高中数学选择性必修第一册

    情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);

  • 直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).

  • 直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.

  • 直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.

  • 直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 人音版小学音乐一年级上野蜂飞舞说课稿

    人音版小学音乐一年级上野蜂飞舞说课稿

    1、振翅疾飞,“下行式”半音阶。a)掌握连续十六分音符节奏;b)学习“下行式”半音阶;c)分析指法,模仿练习; d)学生练习,教师辅导;2、野蜂飞舞,“上、下翻滚式”半音阶。a)视唱,划拍,熟悉第四乐句;b)分析、讨论指法,练习弹奏;3、“嗡嗡”作响,同音换指。a)聆听第十二乐句旋律;b)教师示范,学生观摩;c)学生练习弹奏;四、拓展巩固1、选音色;a)讨论音色:长笛、双簧管、弦乐、钢琴、圆号等多种音色;b)自主选择音色,自由练习;c)展示不同音色的不同听觉效果,互相观摩;2、加节奏;a)教师加节奏示范,讲解弹奏要领;b)学生尝试练习,教师指导;c)跟节奏慢速齐奏;3、加速度;a)赏析破世界纪录的小提琴演奏视频,感受速度带来的音乐魅力;b)学生跟节奏,加速练习,体验速度变化的不同效果;c)个别展示,互相观摩;五、情感升华欣赏不同演奏形式的《野蜂飞舞》。六、结束课堂1、总结。2、下课。

  • 人音版小学音乐一年级上动物说话说课稿

    人音版小学音乐一年级上动物说话说课稿

    6、总结师:听着小朋友们美妙的歌声,看着大家亲密无间的合作,老师的心里无比的快活。动物是人类的朋友,我们要保护动物,爱护动物。我想,小朋友的心情和老师心情是一样的,都很开心是吗?那么,为了表示大家高兴的心情,庆祝我们合作的愉快,我要邀请你们永远做我的朋友!(音乐起,师生一起跳舞《我们都是好朋友》)我邀请到谁,谁就可以再邀请与你合作愉快的小朋友。音乐反复到全体起立)让我们去操场邀请别的小朋友,告诉他们保护动物,爱护动物,走啦!(学生走出教室,本节教学结束)整个教学过程从一开始的律动,后来的动物模仿到创编节奏及即兴表演,运用感知法、认知法、学唱法,让学生用有感情的演唱和肢体语言表达对小动物的喜爱之情;通过创编,培养合作精神和创新能力,获得成功的喜悦。使学生的演、唱、创新、合作能力得到很好的发展,并渗透了思想教育。

  • 《开学第一课观后感》国旗下讲话稿

    《开学第一课观后感》国旗下讲话稿

    老师们,同学们:大家上午好!今天我演讲的题目是:《开学第一课观后感》。央视一套9月4日晚播出的《XX开学第一课:英雄不朽》为我们翻开历史的画卷,让我们重温那个“风雨交加”的年代,那个谱写着传奇的年代。 70年前的我们没有强大的武器,没有舒适的服装,面对列强的一次又一次侵略,有的只是种不服输的念头。列强把守家的堡垒炸出个大洞,没关系我们还有自己的身躯,用我们 的血肉筑成我们新的长城,这句话,并不是所谓的空中楼阁。现在的我们或许无法切实的体会到当初先辈们的艰辛,但我们知道也懂得我们今天的幸福生活是先辈们用自己的身躯替我们打开的幸福之门,我们今天所有的一切,都来自先 辈无怨无悔的付出,振奋其中又何尝不带着一种感激之情?

  • xx镇2023年第一季度工作总结和第二季度工作计划?

    xx镇2023年第一季度工作总结和第二季度工作计划?

    一、一季度工作总结(一)主要经济指标稳步增长,经济结构质量更高后劲更足。一是招商引资成果丰硕。今年先后招引了万亿全屋智能家居和华邦保和2个项目,总投资3.6亿元,仅与襄城区接壤的xxx片区就已落户投资亿元以上的项目10个。二是经济实力稳步提升。预计一季度完成固定资产投资4.9个亿,同比增长28%;完成社会消费品零售总额2.55亿元,同比增长16.9%;完成规上工业产值1.28亿元,同比增长17.4%;完成一般预算收入350万元。三是重点项目稳步推进。目前我镇在库项目15个,规上企业9家,已全部开工;正在培育的规上工业企业2家(森财木业、睿新鹏电子),重点服务业企业1家(南漳县新宗华机动车驾驶员培训学校)。(二)巩固拓展脱贫攻坚成果,推进乡村振兴实现良好开局。一是“三资”管理规范完善。强力推进农村集体“三资”清理工作,镇锁定村级债务总额4300万元,已化解1352万元,xxx、xx集村全部清零,全镇共化解债务31%;二是特色产业蓬勃发展。“一村一品”规划建设成果丰硕,有2.2万户发展养殖业,饲养生猪16万头、家禽160万羽;发展特色产业合计116家,种植面积达9000多亩,发展袋料香菇、羊肚菌、大球盖菇等食用菌53万袋;xxx村和xx村积极融入隆中至水镜庄旅游带建设,考察引进火龙果、草莓、葡萄等特色产业发展,走好农旅结合发展路子。三是美丽乡村建设项目稳步推进。积极谋划建设项目,全镇2023年共谋划建设项目17个,已报县乡村振兴局审批。加快推进产业发展,施家沟村油菜花海被新华社点赞,在驻村工作队大力支持下,xxx村入股xx水乡田园综合体项目,实现项目、村集体、群众“三赢”;积极谋划了2023年衔接资金项目,共申请产业发展项目5个,基础设施项目12个。

  • 部编人教版四年级下册《 飞向蓝天的恐龙》说课稿

    部编人教版四年级下册《 飞向蓝天的恐龙》说课稿

    二、精读重点段,理解演化过程接下来我直奔重点-——课文的第3、4自然段。我以“让我们穿越时空隧道,一起去中生代的地球,看看恐龙的演化过程”这一陈述,十分自然地引出后面的学习。在学习中,我紧紧围绕“恐龙是如何飞向蓝天的”这一问题,设计了合作学习表格,教给学生抓关键词来填表格的方法,引导学生边读边思考,学会学习,学生在完成表格的过程中,不仅理清了课文的叙述顺序,也清楚地知道了恐龙飞向蓝天的过程。有了表格的提示,学生们把课文梳理得更清楚简洁。我又通过填空,图片解说,以及不同形式的朗读进一步加深印象。学生通过自主的,入情入境的朗读,读懂了课文。读的要求明确,读的时间充足,读的层次清楚,使学生亲历阅读过程,走进文本。

  • 初二学生代表新学期第一次国旗下讲话

    初二学生代表新学期第一次国旗下讲话

    尊敬的老师们,亲爱的同学们,大家新年好!我是初二(9)班的xx,很荣幸在新的一学期里给大家做第一次国旗下演讲。春风吹来了温暖的气息,冬天也即将挥手而去,虽然空气中弥漫着些许的凉意,但是,同学们的心是火热的,我们正以更加蓬勃的姿态迎接新学期的到来。经过寒假的修整,新年的更迭,年岁的增长,我相信同学们的心智更加成熟,学识也在逐渐增长。同学们,我们一起憧憬更美好的明天,让我们再一次踏上征途!一寸光阴一寸金,寸金难买寸光阴!时间如小河淌水,不知不觉中,却流去了多年时光。珍惜时间,要记住,没有付出,便没有回报!在新学期中,让我们抛弃不思进取之心,在马年里,跨上属于自己的战马,我们一起向前,朝着属于我们自己的理想,策马奔腾,让一切的累赘化作路边的尘土。握紧手中的马鞭,我们一起绝尘而去!我们一起为自己的成功而努力,为安外的辉煌而拼搏,为祖国的昌盛而奋斗!

  • 春季期第二学期4月份国旗下讲话

    春季期第二学期4月份国旗下讲话

    主题 缅怀先烈,继承遗志尊敬的老师,亲爱的同学们:早上好!这个星期三就是清明节了,很多人都要回家祭祖扫墓了。“清明时节雨纷纷,路上行人欲断魂.”说的就是每当这个特殊的时候,人们都会倍加思念已经死去的亲人,心情难免伤感。今天在这庄严的升旗仪式上,我们凝视着烈士鲜血所染的国旗,不觉思绪又回到那艰苦峥嵘的岁月:旧中国饱受战争的创伤和帝国主义的欺凌,人民受尽磨难和屈辱。旧上海的公园门口曾立着一块醒目的牌子,上面写着“华人与狗不得入内。”外国轮船在黄浦江上肆意闯荡,撞翻中国民船,淹死中国人也不管。那时洋人在中国土地上为所欲为,国人已丧失了最起码的做人尊严。祖国危难之时,无数爱国志士挺身而出,为了祖国的独立统一和人民的解放,甘洒一腔热血。从不惜千金买宝刀,貂裘换酒也堪豪的女侠秋瑾,到一腔热血勤珍重,洒去犹能化碧涛的邹容;从江姐到刘胡兰;从黄继光到董存瑞……无数英烈用他们的生命,谱写了一曲曲壮烈的爱国乐章。难道他们不知道生命的可贵吗?不!他们非常珍惜自己的生命,但是他们深深懂得:在祖国危亡之时,作为一个中国人,保卫祖国,拯救祖国是自己的责任,为了祖国的解放,先烈们抛头颅洒热血,战火中出生入死,监牢里坚贞不屈,刑场上大义凛然。他们用生命、热血换来了华夏民族的新生。

  • 春季期第二学期6月份国旗下讲话

    春季期第二学期6月份国旗下讲话

    主题 孔子的“每事问”今天我国旗下讲话的题目是:孔子的“每事问”孔子名丘,是我国古代著名的思想家、政治家和教育家。孔子自幼勤奋好学,15岁时就确立了坚定的学习志向,开始走上了自学的道路。他不仅刻苦努力,认真读书,而且虚心好问,他的许多学问是他随时随地向别人请教得来的。他问过有名的学者,也问过普通的农夫;他问过白发苍苍的老人,也问过梳者小辫的孩童;他还愿意向不如自己的人请教,能够“不耻下问”。从这当中,他体会到一个道理:“三人行,必有我师焉”。意思说,几个人在一起,其中必定有值得我学习的人。有一次,孔子有机会进入鲁国的太庙。太庙是古代帝王祭祀祖先的地方,里面陈列着许多文物古器,还常举行祭祀活动,在这里,可以了解历史和有关的典章制度。孔子进太庙后,就下功夫认真地进行考察,对每一件不明白的事,都向别人请教。从庙里陈列的件件文物古器到举行仪式时伴奏的音乐,样样都要找人问个究竟。活动结束后,他还拉住别人的衣袖,继续问一些自己不明白的问题。他这样做,曾被人看不起。有人说:“谁说这个年轻人懂得礼呢?

上一页123...283284285286287288289290291292293294下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。