4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
本课我采用欣赏《杜鹃圆舞曲》的片断导入新课,挖掘学生已有的对圆舞曲特点的了解,让学生快速进入学习情境,增加学生对圆舞曲学习的兴趣。导入完新课以后,我遵循音乐是听觉的艺术,从聆听入手学唱歌曲,第一次听录音的范唱,让学生聆听音乐,了解歌词的内容。第二次教师有感情的演唱,激发学生听的兴趣,加深学生对歌曲的节拍情绪的理解和感受。在歌曲旋律唱会后,学生自然地就能演唱这首歌曲,知识技能的掌握渗透在歌曲学唱之中。让学生在轻松愉悦的氛围中短时高效的学会歌曲。为了开发学生的创造性潜智,在学会歌曲以后,我设计了舞蹈创编这个教学环节。舞蹈创编就是学生对音乐的再度创作,是发挥学生想象力和思维潜能的学习领域,是学生积累音乐创作经验和发掘创造思维能力的过程和手段,对于培养具有实践能力的创新人才,具有十分重要的意义。让学生的身心、肢体与音乐密切结合,让学生在创编合作中体验快乐,表现快乐。
结合我们学校的教学条件和我自身会弹琴的优势,我还设计了课堂弹奏活动,激励学生练习好了参加圣诞联欢晚会给大家表演节目。 我把第一段的乐谱进行了简化节奏让学生弹奏,在弹奏基本完成后还设计了学生边唱边弹,并且分组让学生用电子琴自带的的打击乐器进行合奏练习,让学生在学唱的同时更加深入的体会音乐欢快活泼的节奏特点,同时让学生感受合奏的整体的音响效果,培养了学生的动手能力和集体合作能力。 六、总结 本课以歌曲《铃儿响叮当》为主要内容,听、唱、弹等教学环节都围绕他展开,各教学环节的设计易于统一,各项活动的设计均以音乐审美为核心,教学中关注段落的划分,注重引导学生的参与,体验,引导学生积极探索创造学习,展现音乐的节奏之美。
人教版新课标教材必修一的“表达交流”部分,有一个专题是“人性的光辉——写人要凸显个性”。其中的“写法借鉴”部分列举了两则人物描写实例,并归纳出人物描写的几个要点。其训练的思路和方法是很明显的,但所列举的人物描写的实例却不够典型。而必修一第三单元正好是学习写人记事散文,其中的两篇自读课文《记梁任公先生的一次演讲》《金岳霖先生》又是写人记事非常典型的文章,故而我尝试将这两篇文章作为实例和。写人要凸显个性。写作指导结合起来教学。这样设计还有一个目的,那就是解决课程改革中教学内容多而课时紧张的矛盾,提高课堂教学效率。师:今天,我们一起来学习“写人要凸显个性”。这两堂课分四个步骤来完成:一、先学习教材中关于写人方法的介绍,约15分钟;二、快速阅读第三单元的《记梁任公先生的一次演讲》和《金岳霖先生》两篇文章,具体感受其写人的方法,约30分钟;
在上级行确定在我行开展规章制度教育宣讲活动后,我能从思想上高度重视,积极配合支行搞好本次学习教育活动,认真学习有关制度规定,做好笔记。通过学习,使我认识到加强规章制度的执行,是我们农业银行各项业务快速发展的保证,也是防止各类案件和违规问题发生的基本前提。加强制度宣讲教育活动是各级行贯彻执行我行各项规章制度的重要工作任务,是我们每一位员工的重大责任。
第一步,要对市场进行调研与预测。调研时营销的决策和基础,没有调研就没有发言权,就不能掌握市场的真正动态。在调研的同时一定要具有系统性,客观性,不能带有主观偏见,不能简单的以点带面,以局部概括整体。这样就会影响我们做出科学的结论,进而影响营销决策,对调研的结果一定要重视,如果不重视,那么调研毫无疑义。 第二步,市场定向与成功营销,找准产品的目标市场。即产品所面对的是哪些顾客群,是通用型的还是针对某一特殊阶层,这样有利于对产品广告设计和宣传,进而有利于产品的成功营销。
一,深刻准确认识“十破”与“十立” “十破”既:破除信心不足的思想;破除墨守成规的思想;破除自我满足的思想;破除封闭保守的思想;破除消极等待的思想;破除怕担责任的思想;破除坐而论道的思想;破除反应迟缓的思想;破除忽视产业的思想;破除不跑不要的思想。 “十立”既:树立敢于争先的意识;树立开拓创新的意识;树立追求卓越的意识;树立包容合作的意识;树立抢抓机遇的意识;树立勇于担当的意识;树立干字当头的意识;树立立说立行的意识;树立工业主导的意识;树立主动争取的意识。
社会是由人集合而成的,而人们活动的目的往往不同,如果没有一个规矩来约束,各行其是,社会就会陷入无秩序的混乱中。因而让受教育者形成规则意识,这是所有教育的基点。培养学生的规范意识、规则意识也是《思想道德修养与法律基础》课教学的核心内容和重要目标。 思想品德教研部在网络集体备课时认为,疫情蔓延以来,不断更新的数字,不断变化的疫情实况,考验着人们的规则意识与理性。在这次抗击疫情工作中,有人无知无畏、心存侥幸,不加防护,不听劝阻;有的人无视规则,毫无理性,造谣传谣;有人无视规定,招摇过市参与聚会,给社会抗疫工作增添了不必要的麻烦。为此,教师们通过网络平台告诉学生:一个强大的国家,需要有规则意识和理性成熟的公民。特别是在疫情防控的关键时期,更不能做无视规则、失去理性的事情。按照上级部门的文件精神和通知要求,各高校都制定了相关规定,比如要求学生不得提前返校,教师要做好延期开学期间线上教学的各项准备工作等规定。大家都要严格遵守这些规定,分清是非,成为具有规则意识和理性的新时代公民。
欣赏完自己的表演后,接下来同学们的吉他独奏表演、歌曲合唱、相声表演更加让我感遭到了集体的魅力,多姿多彩的节目表演,展现了同学们多种不同的才艺,表现了当代大学生风姿多彩的才能,被气球和彩带装潢的教室正是由于地方不大,才更显示出了一家人的暖和。假如说第一次团日活动像一颗火炉暖和了交运3班这个大家庭,那末第二、第三次团日活动就是一股生命的气力把这个大家庭由出色一步步拥向辉煌。在集体参观伊利团体的第二次团日活动中通过了解伊利团体的历史沿革、生产范围还有当前其所面临的国际国内情势,让我感遭到中国企业的勃勃生机,特别是那叠放成品牛奶的铁架:真是一座牛奶大厦。
面对来势汹汹的疫情,从猝不及防到全力阻击,从各自为战到同舟共济,国人或勇毅驰援,或坚守岗位,或宅家不出,我们各自用自己的方式共同抗击疫情。中华民族在灾难的考验中凝聚起的正气磅礴的民族精神,百折不挠的民族品格,万众一心的民族情怀定格为无数震撼心灵的画面,砥砺国人奋力前行。 每天,我宅居在家,却和世界息息相通:单位群里天天打卡汇报健康,我打卡之后总会看一看群里那些熟悉的名字,心里莫名的有一种别后无恙各自安好的喜悦;学校领导天天上门查询问候,在我登记健康的时候,我们总会微微一笑,似乎放下了千斤重担;亲朋好友不时微信问候,我们的话题不再只是家长里短,还有武汉加油,中国挺住,我们一定赢……生平第一次,我真实地体会到:无数的人们,无穷的远方,都与我有关。
孩子们是国家的未来祖国的希望,我们对他们的合法权给予特殊呵护,也是一项具有挑站性的工作,这需要全社会共同参与到其中,我们每一个人一起完成,共同维护未成年人合法权益,更好的履行自己的责任和义务,让孩子们活泼健康快乐的成长,成为一代强人,将来为祖国做出更大的贡献。
第一,要把以"客户为中心"的理念贯穿于我们工作的始终。"基础牢固,稳如泰山;基础不牢,地动山摇"。风险的防范与控制,说到底是人的因素起着重要作用,客户创造市场,客户创造价值,客户是我们的效益之源,是我们的衣食父母,有了客户,我们的业务才有发展,员工的价值才能够体现。 如果每个岗位的员工都能严格要求、严格规范、严格标准、严格执行规章制度,业务操作中的风险就会得到有效的遏制。要在全体员工中大力倡导、深入宣传价值最大化、资本约束、全面风险管理、风险与收益平衡、内控优先等先进理念,让全体员工了解资产质量与经济增加值、与薪酬分配的关系,自觉转变观念,将自身工作作为第一道防线纳入到风险控制体系中,引导和带领全行员工形成规范操作,防范风险的良好氛围,真正把为前台、为基层、为客户服务当作提升风险与回报管理水平的出发点和归宿,就能有效提高我行风险管理和内控政策、法规、制度的执行和落实,全面加强风险管理和内控建设具有不可替代的重要作用。
“通过做事和与周围的人比较才能发现自己的不足,才知道怎样去提高”“如果想做就用心地做好,我相信只要用心了你便有收获!”这是我在这次三下乡活动中感悟得到的。在支赴共青城实践服务队里虽然很辛苦,但是我们既然选择来这里就应当克服一切困难,这才能体现我们当代大学生在将来的竞争中更能适应社会的能力。这忙碌的七天“三下乡”的实践活动,觉得只是刹那间的转瞬而逝心中真有些不舍。在这七天里总有辛酸与欢笑。我印象最深刻的就是受到了当地领导和村民们的热情的款代和欢迎。我们队伍也搞了一系列宣传等方面的活动。给予当地村民深下了很好的一个大学生的形象。做为一名当代大学生的我们也一以个大学生的具体行动证明了我们的一切。我们都感到无比自豪。
弘扬五四精神,肩负历史使命,就是要树立理想,立志报国,献身于改革开放和现代化建设的伟大事业,自觉地把自己的人生追求同祖国和民族的命运前途联系起来,在服务祖国服务人民的实践中发挥自己的聪明才智;就是要深入群众,投身实践,与工农相结合,与实践相结合,自觉到祖国和人民最需要的地方去,了解国情,经受锻炼,增长才干,开拓视野;就是要勤奋学习,善于创造,刻苦学习马克思主义基本理论,努力学习经济科技法律历史和其他方面的知识,用人类创造的优秀文明成果武装自己,提高创新能力,勇于创新实践;就是要锻炼品格,磨砺意志,树立正确的世界观、人生观、价值观,提高自身素质,完善人格品质,努力做中华民族美德的传承者,做体现时代进步要求的新道德规范的实践者,做新型人际关系和良好社会风尚的倡导者;就是要脚踏实地,艰苦奋斗,深刻认识我国的基本国情,继承和发扬艰苦奋斗的优良传统,任何时候都不懈怠创业精神,都不涣散奋斗意志,创造无愧于前辈、无愧于后辈的业绩。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。