教学过程:一、说月亮。1、创设情景。(课件演示):出示一个圆,“猜猜看,这是什么?”2、谈话导入 课题。“听着音乐想一想,月亮像什么?”二、唱月亮:(学习歌曲《月亮河》)1、教师范唱。2、再次聆听歌曲,感受歌曲情绪。3、熟悉歌词。4、感受三拍子的节奏。5、按节奏朗读歌词。6、学唱歌曲:(1) 随琴轻声哼唱。(2)轻声演唱歌词。(3)强调二、四乐句结尾六拍子延音处的气息。(4) 加三拍子律动有感情的演唱。(5)强调三拍子的强弱规律,用打击乐器在强拍处伴奏演唱。(6)表现歌曲。三、听月亮:(一)对比欣赏《月光光.》1、初听:“听听这首歌和《望月亮》有什么不同的地方?歌中的人们在借助月光赞美什么?”2、自己选择合适的打击乐为歌曲伴奏。(二)听赏《月亮河边的孩子》。1、感受三拍子歌曲的特点,“听听这首歌和《望月亮》有什么相似的地方。”2、总结三拍子歌曲特点和演唱情绪。
教学过程:一、组织教学。让学生在京剧的音乐中进入教室(动作可自由。)二、导入。1、老师让学生唱一唱上一节课的《唱脸谱》并且说出歌曲中有几种脸谱及各种脸谱的特点(多媒体同时播放一段京剧,让学生注意京剧中的脸谱、行头、人物的动作、表情等。)2、老师、同学们:你们对京剧知道多少?(学生畅所欲言)京剧是中国的国粹。特别是脸谱、服装等,是中国物质文化的宝贵遗产。你们喜欢吗?三、欣赏感受。(一)《包龙图打坐在开分那府》。1、老师出示脸谱问:同学们刚才你们看到这个脸谱吗?代表什吗?(正义,铁面无私)常用来代表谁?(包公、张飞。)2、师:对他们都是正义的象征,今天咱们讲一个关于包公的故事。(先简介一下《铡美案》的剧情,激起同学的愤慨。师:咱们先看一下包公是怎样对待忘恩负义的陈世美的?3、大屏幕放录音唱段,老师提出问题,哪部分情绪激昂,哪部分节奏舒缓。(先照对歌词,有助于学生对唱词的理解。)放录音第二遍,师生互填表。4、拓展延伸。让学生舒一下情怀,假如你遇到如此情况,是刚正不阿主持正义,还是顺水推舟做个人情?(学生自由议论,热烈发言。)
教学过程:一、新授课1、作者简介及创作背景:黄自(略)。创作背景:《长恨歌》的歌曲是韦翰章根据元曲《长生殿》和白居易的长篇叙事诗改编的。1932年的中国局势可说颇混乱,“九.一八”事变后,大家的爱国情绪可说达至沸点,当时选取唐玄宗与杨贵妃的故事,指出政治不清明,就会引起民族灾难,正如唐玄宗沉迷酒色而引致安史之乱一样。作品本身虽然描述的是唐玄宗和杨贵妃的爱情悲剧,但它的实质的借古讽今,表现了作者的爱国热忱。2、深层感悟:复听作品;模拟角色:把自己当做一名忠心耿耿的大臣或士兵,投入到角色之中,设身处地地体会在边关告急,权臣造反,皇帝沉迷酒色,不理朝政的形势下,士兵们的心情是怎样的? (深层次体会作品的内涵。)3、拓展与探究:(1)对比《渔阳鼙鼓动地来》与《山在虚无缥缈间》。(2)杨贵妃是我国古代四大美女之一,雍容、华贵,擅长歌舞,具有倾城倾国的美貌。(展示图片。)(3)深入拓展:欣赏其他姊妹艺术的表现形式——京剧《贵妃醉酒》。4、在黄自的《踏雪寻梅》中结束本课。
【活动目标】1.观察认识合欢的花、树、皮。2.简单了解其各部分的功用。3.培养锻炼幼儿的动脑动手及想象思维能力。【活动准备】1.查资料,搜图片,制作幻灯片。2.纸笔、颜料、胶水。3.合欢的花、叶若干(分别放在小筐里)。 【活动方法】 观察法、讲解法、引导发现法、操作法等。【活动过程】 先放幻灯给孩子们看,进一步激发他们的活动兴趣和探究欲望;然后组织全体聚到合欢树下,从观察入手,一步步来引导他们认识合欢树,了解合欢树。1.提问幼儿合欢树的名称,简单了解它的别名:夜合树、马缨花、绒花树、扁担树、芙蓉树。
2、尝试在集体面前大胆表演,体验与同伴游戏及表演的乐趣。 3、能按节奏、较清晰地唱出歌词。准备: “糖梅仙子“的音乐、图谱两幅、仙女棒一个、每个篮子放一些糖果幼儿人手一份。过程: 一、出示图一,用故事引入活动,欣赏ABA段。 教师:你们知道我是谁吗?我是从精灵王国来的糖梅仙子,昨天精灵国王过生日,我和小精灵们都去给国王庆祝,那里可热闹了,你们想不想知道生日会上发生了什么有趣的事情?让我来告诉你们吧!听!(教师徒手做动作,不唱,幼儿欣赏)二、欣赏A段(教师出示糖果,唱出歌词)
二、教学目标:1、能用蜡笔简单勾勒出物体的形象。2、尝试在湿画法中用盐进行作画,感受其所产生的奇妙的肌理效果。3、体验玩色的乐趣。三、教学准备:排笔、大号水粉笔、水粉颜料、盐、纸、盛水桶、抹布,范例。四、教学过程:(一)导入课题1、师:夏天到了,许多宝宝都出来做游戏了。猜猜会有谁呢?(启发幼儿自由想象)2、师:你想和哪个宝宝玩,就把它画出来吧! 教师巡回指导,找出画的好的作品作范例。(二)讲解示范 师出示范画(已有一个简单的蜡笔画形象):我也找到了一个饮料宝宝做朋友。瞧它玩得多开心呀!
从幼儿的感受和认知上制定:1.欣赏中国结的多样性,感受中国结的美。这是活动的重点,在活动中,运用欣赏、交流、情感的激发等形式突破重点。从幼儿的能力和情感上制定2.学习编简单图案,萌发幼儿对中国劳动人们的热爱之情。通过引导孩子们动手制作简单的中国结,取名等实现情感的升华。活动准备:幼儿知识能力的准备:对中国结意义的简单了解环境布置的准备:收集各种中国结悬挂起,布置成一个展览厅
活动准备:打击乐器:小玲、铃鼓、圆舞板若干磁带,音响,幼儿人手两根彩条 活动过程 一、教师带领幼儿随着音乐表演舞蹈《大中国》 二、学习探索用拍节奏,表现《大中国》舞曲。 1、刚才,我们小朋友舞动彩条表演《大中国》,下面,我们来学习拍手伴奏表演《大中国》音乐好吗? 2、教师反馈幼儿的想法,并将挥动彩条的1-17喝4-25小节的动作改成拍手的动作。 3、幼儿随乐练习改变的动作 4、幼儿尝试看教师指挥做拍手的节奏动作。“我来指挥,你们看我的动作,我指到哪里,哪里的小朋友就拍手。”
教育目标:教育学生在放国庆长假中注意安全,遵守交通规则,学会保护自己与他人的生命.一、理解交通事故的危害性和造成悲剧发生的原因。1、让学生说一说发生在自己身边的交通事故。2、让学生说一说听到这些悲惨的交通事故以后自己的想法或带给我们的启示。3、时代的前进、社会的发展需要文明的交通环境,人们的生活、工作需要安全、顺畅、有序的每一天。车轮下真实的死亡报告,给我们带来的不仅仅是震惊和痛心,更重要的是警醒和反思。是什么造成了这场悲剧?4、让学生说一说造成悲剧发生的原因,学生可以各抒已见。
主持人:下面请听快板《水的用处真叫大》竹板一敲来说话,水的用处真叫大;洗衣服,洗碗筷,洗脸洗手又洗脚,煮饭洗菜又沏茶,生活处处离不开它。栽小树,种庄稼,农民伯伯把它夸;鱼儿河马大对虾,日日夜夜不离它;采煤发电要靠它,京城美化更要它。主持人:同学们,听完了这个快板,你们说水的用处大不大?甲说:看了他们的快板表演,我知道日常生活种离不了水。乙说:看了表演后,我知道水对庄稼、植物是非常重要的。丙说:我还知道水对美化城市起很大作用。2.主持人:水有这么多用处,你们该怎样做呢?(1)(生):我要节约用水,保护水源。(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。(3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。(4)(生):我要用洗脚水冲厕所。
故线段d的长度为94cm.方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.已知三条线段长分别为1cm,2cm,2cm,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为本题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:若x:1=2:2,则x=22;若1:x=2:2,则x=2;若1:2=x:2,则x=2;若1:2=2:x,则x=22.所以所添加的线段的长有三种可能,可以是22cm,2cm,或22cm.方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.
解析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.探究点二:线段垂直平分线的作图如图,某地由于居民增多,要在公路l边增加一个公共汽车站,A,B是路边两个新建小区,这个公共汽车站C建在什么位置,能使两个小区到车站的路程一样长(要求:尺规作图,保留作图痕迹,不写画法)?
(三)成比例线段的概念1、一般地,在四条线段中,如果 等于 的比,那么这四条线段叫做成比例线段。(举例说明)如:2、四条线段a,b ,c,d成比例,有顺序关系。即a,b,c,d成比例线段,则比例式为:a:b=c:d;a,b, d,c成比例线段,则比例式为:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例吗?a=12,b=8,c=15,d=10呢?三、例题解析: 例1、A、B两地的实际距离AB= 250m,画在一张地图上的距离A'B'=5 cm,求该地图的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜边AB=2。求⑴ ,⑵ 四、巩固练习1、已知某一时刻物体高度与其影长的比值为2:7,某 天同一时刻测得一栋楼的影长为30米,则这栋楼的高度为多少?2、某地图上的比例尺为1:1000,甲,乙两地的实际距离为300米,则在地图上甲、乙两地的距离为多少?3、已知线段a,d,b,c是成比例线段,其中a=4,b=5,c=10,求线段d的长。
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直线AD垂直平分线段EF.方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计1.线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段的垂直平分线的判定定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.
案例①武夷山景区通过对案例①的学习,了解到:①武夷山景区自然景观优美,并具有较高的科学价值(丹霞地貌和生物多样性)、历史文化价值(丰富的文化遗存),具有极高的旅游资源价值。②地理位置优越和交通条件便利、基础设施完善。③武夷山的国内客源市场主要集中在长江三角洲和珠江三角洲,国际客源市场主要分布在以新加坡、日本为主的亚洲。游客多,市场广阔。通过分析,进一步了解旅游资源开发条件评价的基本内容。图2.15武夷山景区旅游略图通过图2.15了解了武夷山著名景区、景点的分布。活动根据案例,结合图2.15,试对武夷山景区的开发条件进行评价提示:可按以下步骤进行;1.根据学生各自的兴趣爱好和性格,自由组合分组。2.仔细阅读本案例,各组确定自己感兴趣的评价项目,并通过新闻媒介、网络、书籍等进一步收集有关信息。3.小组信息汇总,进行组内讨论。4.小组在全班进行汇报交流。
【学习目标】1.知识与技能:加深对燃烧条件的认识,进一步了解灭火的原理。2.过程与方法:体验实验探究的过程,学习利用实验探究的方法研究化学。3.情感态度与价值观:利用化学知识解释实际生活中的具体问题,使学生充分体会到化学来源于生活,服务于社会。【学习重点】通过物质燃烧条件的探究,学习利用控制变量的思想设计探究实验,说明探究实验的一般过程和方法。【学习难点】利用控制变量的思想设计对照实验进行物质燃烧条件的探究。【课前准备】《精英新课堂》:预习学生用书的“早预习先起步”。《名师测控》:预习赠送的《提分宝典》。情景导入 生成问题1.复习:什么叫燃烧?燃烧条件有哪些?今天自己设计实验来进行探究。2.明确实验目标,导入新课。合作探究 生成能力学生阅读课本P150的相关内容并掌握以下内容。实验用品:镊子、烧杯、坩埚钳、三脚架、薄铜片、酒精、棉花、乒乓球、滤纸、蜡烛。你还需要的实验用品:酒精灯、水。1.实验:用棉花分别蘸酒精和水,放到酒精灯火焰上加热片刻。上述实验中我们能观察到什么现象?说明燃烧需要什么条件?如果在酒精灯上加热时间较长,会发生什么现象?答:蘸酒精的棉花燃烧,蘸水的棉花没有燃烧,说明燃烧需要有可燃物。如果加热时间较长,水蒸发后,蘸水的棉花也会燃烧。2.如图所示,进行实验:我们能观察到什么现象?说明燃烧需要什么条件?答:在酒精灯火焰上加热乒乓球碎片和滤纸碎片,都能燃烧,说明二者都是可燃物。放在铜片两侧给它们加热后可看到乒乓球碎片先燃烧,说明燃烧需要温度达到可燃物的着火点。3.你能利用蜡烛和烧杯(或选择其他用品)设计一个简单实验证明燃烧需要氧气(或空气)吗?答:点燃两支相同的蜡烛,然后在一支蜡烛上扣住一只杯子,看到被杯子扣住的蜡烛一会儿就熄灭,说明燃烧的条件之一是需要氧气。
教学反思: 1.本课时设计的主导思想是:将数形结合的思想渗透给学生,使学生对数与形有一个初步的认识.为将来的学习打下基础,这节课是一堂起始课,它为学生的思维开拓了一个新的天地.在传统的教学安排中,这节课的地位没有提到一定的高度,只是交给学生比较线段的方法,没有从数形结合的高度去认识.实际上这节课大有可讲,可以挖掘出较深的内容.在教知识的同时,交给学生一种很重要的数学思想.这一点不容忽视,在日常的教学中要时时注意.2.学生在小学时只会用圆规画圆,不会用圆规去度量线段的大小以及截取线段,通过这节课,学生对圆规的用法有一个新的认识.3.在课堂练习中安排了度量一些三角形的边的长度,目的是想通过度量使学生对“两点之间线段最短”这一结论有一个感性的认识,并为下面的教学做一个铺垫.
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分线定义).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代换).又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴DF∥BE(内错角相等,两直线平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分线定义),∠ADE=∠1(等量代换).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形内角和为180°及等量代换),即∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行).方法总结:解此类题应首先结合图形猜测结论,然后证明.证明两条直线平行,一般先找它们的截线,再求同位角相等(或内错角相等,同旁内角互补)来说明两直线平行.若没有公共截线,则需作出两直线的截线辅助证明.三、板书设计平行线,的判定)判定公理:同位角相等,两直线平行判定定理内错角相等,两直线平行同旁内角互补,两直线平行本节课通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式.
方法总结:平行线与角的大小关系、直线的位置关系是紧密联系在一起的.由两直线平行的位置关系得到两个相关角的数量关系,从而得到相应角的度数.探究点四:平行于同一条直线的两直线平行如图所示,AB∥CD.求证:∠B+∠BED+∠D=360°.解析:证明本题的关键是如何使平行线与要证的角发生联系,显然需作出辅助线,沟通已知和结论.已知AB∥CD,但没有一条直线既与AB相交,又与CD相交,所以需要作辅助线构造同位角、内错角或同旁内角,但是又要保证原有条件和结论的完整性,所以需要过点E作AB的平行线.证明:如图所示,过点E作EF∥AB,则有∠B+∠BEF=180°(两直线平行,同旁内角互补).又∵AB∥CD(已知),∴EF∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠FED+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性质),即∠B+∠BED+∠D=360°.方法总结:过一点作一条直线或线段的平行线是我们常作的辅助线.
1.了解“两点之间,线段最短”.2.能借助尺、规等工具比较两条线段的大小,能用圆规作一条线段等于已知线段.3.了解线段的中点及线段的和、差、倍、分的意义,并能根据条件求出线段的长.一、情境导入爱护花草树木是我们每个人都应具备的优秀品质.从教学楼到图书馆,总有少数同学不走人行道而横穿草坪(如图),同学们,你觉得这样做对吗?为了解释这种现象,学习了下面的知识,你就会知道.二、合作探究探究点一:线段长度的计算【类型一】 根据线段的中点求线段的长如图,若线段AB=20cm,点C是线段AB上一点,M、N分别是线段AC、BC的中点.(1)求线段MN的长;(2)根据(1)中的计算过程和结果,设AB=a,其它条件不变,你能猜出MN的长度吗?请用简洁的话表达你发现的规律.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。