[设计意图]节环节的设置是为了使学生在掌握不等式性质的基础之上,加以拓展的作业,使课程的内容不但能满足全体学生需求,更能满足学有余力的学生得到更大收获,从数轴上获取信息来完成填空,从而体现数形结合的思想,学生通过参与活动,体会挑战成功的喜悦,并且他们的求胜心理得到了满足,沉醉在知识给他们带来的快感中完成本节课的学习,(六)课堂小结最后,凯旋归来话收获:通过本节课的学习,你收获到了什么?学生们都积极的举手回答,说出了各种各样的收获,比如:1、学会了不等式的三条基本性质2、学会了用字母来表示不等式的性质3、学生不等式与等式的区别等等;学生在回答的时候,老师加以评价和表扬并展示主要内容;这里教师要再次强调,特别注意性质3,两边同乘(或除以)一个负数时,不等号的方向要改变,数学思想的方法是数学的灵魂,这节课我们体验了三种数学思想,一是类比的思想,二是数形结合的思想,三是分类讨论的思想,
本学期第十九周国旗下讲话暨周恩来班交接仪式薪火相传,后继有人老师们,同学们,大家早上好。去年年底,我们高三(7)班很荣幸被授予省“周恩来班”的荣誉称号,成为整个xx市获此殊荣的两个班级之一。然而我觉得,“周恩来班”并非只是一种荣誉、一块牌子,更是一种精神,一种精神的传承与发展。美国总统肯尼迪的夫人杰奎琳说:“全世界我只崇拜一个人,那就是周恩来。”没错,周恩来崇高的品德,伟大的人格足以感染和震撼我们每一个人。我们作为新一代的中国人,更有必要也有责任要不断从周恩来的精神里汲取养料,为中华之崛起而读书,为中华之崛起而奋斗。所以,我们重温周恩来,但不仅仅只是缅怀,而是去触摸一种跨越时空的人格精神,学习这种精神,提高自己的思想境界,成为对社会有用的人。学习周恩来,我们要善于学习,热爱学习,并懂得学以致用。周恩来“面壁十年图破壁,难酬蹈海亦英雄”的诗句就集中表现了他学与用,知与行,认识与实践的深刻理解与豪迈气概。这是一种学习方法,更是一种学习动力,能够激励我们活到老学到老。
五.说教学过程:(重点)1.课题引入:课堂探究导入新课。采用教材现成的探究活动导入新课,既“温故”又“知新”,还节约了课堂有效时间。2.讲授新课:(20-25分钟)本课的重难点是关于哲学基本问题的解释,我引用一个很著名的学生也略知一二的唯心主义观点的例子(课堂探究1)顺利进入本课重要知识点的学习,采用案例教学,激发学生的兴趣以及探究问题的欲望,学习哲学基本问题的第一个方面,并用问题和练习形式巩固知识,强化学生易错已混知识点;课堂探究2,同样引用哲学上的著名案例让学生分析探究思考以及合作交流,学生趣味浓厚,主动深入学习本课知识,达到预期教学目的。此时,本课的重点知识教学完成。关于本课的第二个知识点“为什么思维和存在的关系问题是哲学的基本问题”采用学生自主阅读、合作交流的方法,归纳总结,完成本知识目标。3.课堂反馈、知识迁移(10-15分钟)采用学生总结、随堂练习等形式巩固本课知识,同时检验教学效果。可使学生更深刻的理解教学重点。
②关于哲学的第二个问题是——思维和存在有没有同一性解释同一性——就是说意识(思维)能否正确认识物质(存在)的问题。(让学生表达他们自己的意见)总结得出三种看法——认为意识(思维)可以正确认识物质(存在)的,属于可知论者;凡是认为意识(思维)不能正确认识物质(存在),属于不可知论者。当然也有些同学是两者观点都有,这种同学我们把他称为不彻底的不可知论者。2、为什么思维和存在的关系问题是哲学的基本问题(1)它是人们在生活和实践活动中首先遇到和无法回避的基本问题(举例说明问题,吃饭的时候吃什么菜,学习计划与学习的实际等等)结合教材P10探究进行讲解举例:11月31日请全班同学吃雪糕,吃完后再去肯德基大吃一顿,之后再到卡拉OK唱通宵——不切实际,因为11月并没有31日。(2)它是一切哲学都不能回避、必须回答的问题(不同的回答,直接决定着哲学的不同发展方向。)
一、教材分析本框题包括什么是哲学的基本问题、为什么思维和存在的关系问题是哲学的基本问题两个目题。第一个问题:什么是哲学的基本问题。其逻辑顺序是:什么是哲学的基本问题→哲学的基本问题所包含的两方面的内容→对哲学的基本问题第一方面内容的不同回答是划分唯物主义和唯心主义的标准→对哲学的基本问题第二方面内容的不同回答是划分可知论和不可知论的标准。第二个问题:为什么思维和存在的关系问题是哲学的基本问题。其 逻辑顺序是:思维和存在的关系问题是人们在现实生活和实践活动中遇到的和无法回避的基本问题→思维和存在的关系问题,是一切哲学都不能回避的、必须回答的问题→思维和存在的关系问题,贯穿于哲学发展的始终,对这个问题的不同回答决定着各种哲学的基本性质和方向,决定着对其它哲学问题的回答。 二、教学目标(一)知识目标(1)识记哲学的基本问题(2)解释哲学的基本问题
方法总结:对等式进行变形,必须在等式的两边同时进行,即同加或同减,同乘或同除,不能漏掉一边,且同加或同减,同乘或同除的数必须相同.探究点二:利用等式的基本性质解方程用等式的性质解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的两边都减7,再在等式的两边都除以4,可得答案;(2)在等式的两边都乘以6,再合并同类项,可得答案.解:(1)方程两边都减7,得4x=-4.方程两边都除以4,得x=-1;(2)方程两边都乘以6,得3x-2x=24,x=24.方法总结:解方程时,一般先将方程变形为ax=b的形式,然后再变形为x=c的形式.三、板书设计教学过程中,强调学生自主探索和合作交流,通过观察、操作、归纳等数学活动,感受数学思想的条理性和数学结论的严密性.
教学目标1、知识目标:掌握等式的性质;会运用等式的性质解简单的一元一次方程。2、能力目标:通过观察、探究、归纳、应用,培养学生观察、分析、综合、抽象能力,获取学习数学的方法。3、情感目标:通过学生间的交流与合作,培养学生积极愉悦地参与数学学习活动的意识和情感,敢于面对数学活动中的困难,获得成功的体验,体会解决问题中与他人合作的重要性。教学重点与难点重点:理解和应用等式的性质。难点:应用等式的性质,把简单的一元一次方程化为“x=a”的形式。教学时数 2课时(本节课是第一课时)教学方法 多媒体教学教学过程(一) 创设情境,复习导入。上课开始,给出思考,(算一算,试一试)能否用估算法求出下列方程的解:(学生不用笔算,只能估算)
【类型二】 根据不等式的变形确定字母的取值范围如果不等式(a+1)x<a+1可变形为x>1,那么a必须满足________.解析:根据不等式的基本性质可判断a+1为负数,即a+1<0,可得a<-1.方法总结:只有当不等式的两边都乘(或除以)一个负数时,不等号的方向才改变.三、板书设计1.不等式的基本性质性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变;性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;性质3:不等式的两边都乘(或除以)同一个负数,不等号方向改变.2.把不等式化成“x>a”或“x<a”的形式“移项”依据:不等式的基本性质1;“将未知数系数化为1”的依据:不等式的基本性质2、3.本节课学习不等式的基本性质,在学习过程中,可与等式的基本性质进行类比,在运用性质进行变形时,要注意不等号的方向是否发生改变;课堂教学时,鼓励学生大胆质疑,通过练习中易出现的错误,引导学生归纳总结,提升学生的自主探究能力.
【类型二】 分式的约分约分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.三、板书设计1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.
设计意图:我运用了引导学生探究发现的教学方法,学生采用观察比较、分类归纳、讨论交流的学习方法。因为“质数和合数”是学生在学习了因数和倍数的基础上进行学习的。因此我抓住新旧知识的连接点,让学生找自己座号的因数,从学生身边熟悉的事物入手,唤起学生亲切的情感,激发他们学习的兴趣。学生是学习的主体,只有让学生参与知识的形成过程,数学知识才会内化学生自己的东西,四人小组讨论交流就是让学生在探讨中提高学习的能力。5、科学总结 实战练习(1)基本练习。完成“做一做”。 (2)强化练习。练习四第1、2题。 (3)综合练习。1-80质数表。验证刚才的判断是否正确。师:通过这节课的学习,你又有了什么新的收获? 你能帮甜甜解决箱子密码的问题了吗?
一、说教材《加减混合》是义务教育课程标准实验教科书数学(人教版)二年级上册第28页的例3和例4。这个知识点是在上一课时《连加、连减》知识的基础上进行的一个提升和知识点的整合。二、教学目标 1、结合具体的情境,让学生经理探索加减混合运算的计算方法的过程。 2、使学生掌握100以内数加减混合运算的计算方法,并学习笔算的书写格式,掌握简便写法。 3、让学社在解决简单问题的过程中,体会数学与生活的密切联系。三、说教学重点难点重点:正确计算加减混合式题。 难点:优化算法,正确计算加减混合式题。 四、说教学程序 根据本节课的特点,我准备采用演示法、比较法、谈话法、讨论法和练习法等多种教学方法,设计了如下教学过程:
四、说教法、学法我在教学中主要采用的教学方法是先学后教中的“两学两教”。辅之以多媒体教学手段(主要通过微课视频的观看学习)。本课学生的学习方法主要有:自主发现法、合作交流法、自学尝试法等。1.学生在自主探究解答例题,求两种品牌罐头的合格率时,主要采用自学尝试法,根据知识的迁移,学生能够正确求出产品合格率。2.在总结小数、分数化成百分数的方法时,学生主要采用自主发现,合作交流的方法。首先让学生观察例题板书,想一想怎样把小数、分数化成百分数,采用了“兵教兵”的方法,达到了人人参与的目的。当然,由于学生所处的文化环境,家庭背景和自身思维方式的不同,不同的学生所采用的方法也不尽相同,作为教师要尊重学生的选择,允许学生用自己喜欢的方式学习数学。五、说教学过程
大家好,今天我说课的内容是人教版义务教育课程标准实验教科书数学一年级上册第五单元中的《加减混合》。一、教材分析(一)教学内容及重点难点与上一节课学习的连加、连减相同,加减混合也是由两个计算步骤构成的一个连续的口算过程,但不同的是对于一年级学生来说既要记住第一步计算结果,又要在第二步计算时应对跟第一步不同的运算方法有一定的难度。所以掌握加减混合运算过程是本课的重点和难点之一。 另一方面,教材有意地呈现了对比性很强的两组情境图帮助学生学习,情境图既有现实性和趣味性,又能直观地展示加减混合算式的计算过程和算理,充分体现数学来源于生活,又巧妙地利用生活经验来理解数学知识。但是教材是第一次出现组合型的情境图,学生对图中原来物体的个数很难理解,所以如何指导学生学会看这种组合型的情境图也是本节课教学的另一重难点。
例7 用描述法表示抛物线y=x2+1上的点构成的集合.【答案】见解析 【解析】 抛物线y=x2+1上的点构成的集合可表示为:{(x,y)|y=x2+1}.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全体实数.变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{ y| y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全体实数.解题技巧(认识集合含义的2个步骤)一看代表元素,是数集还是点集,二看元素满足什么条件即有什么公共特性。
第三条甲方安排乙方执行以下第___种工时制度:(一)执行标准工时制度。乙方每天工作时间不超过8小时,每周工作不超过40小时。每周休息日为__________。(二)经当地劳动行政部门批准,执行以_______为周期的综合计算工时工作制度。(三)经当地劳动行政部门批准,执行不定时工作制度。甲方保证乙方每周至少休息一天。乙方依法享有法定节日假、产假、带薪年休假等假期。甲方因顾客服务需要,商得乙方同意后,可安排乙方加班。日延长工时、休息日加班无法安排补休、法定节假日加班的,甲方按《劳动法》第四十四条规定支付加班工资。
第三十条下列情形之一,甲方可以解除本合同,但应提前三十日以书面形式通知乙方:1.乙方患病或非因工负伤,医疗期满后,不能从事原工作也不能从事甲方另行安排的工作的;2.乙方不能胜任工作,经过培训或者调整工作岗位,仍不能胜任工作的;3.双方不能依据本合同第二十七条规定就变更合同达成协议的。第三十一条甲方濒临破产进行法定整顿期间或者生产经营发生严重困难(地方政府规定的困难企业标准),经向工会或者全体职工说明情况,听取工会或者职工的意见,并向劳动保障行政部门报告后,可以解除本合同。第三十二条乙方有下列情形之一,甲方不得依据本合同第三十条、第三十一条终止、解除本合同:1.从事接触职业病危害作业未进行离岗前职业健康检查或者疑似职业病人在诊断或者医学观察期间的;
第三十一条有下列情形之一的,甲方解除本合同,应根据乙方在甲方工作年限,每满1年支付乙方相当于甲方上年月平均工资1个月工资的经济补偿金,不满1年的按1年计算,如乙方解除本合同前12个月的平均工资高于甲方上年月平均工资,按本人月平均工资计发:(一)乙方患病或者非因工负伤,不能从事原工作也不能从事甲方另行安排的工作的;(二)本合同订立时所依据的客观情况发生重大变化,致使合同无法履行,经甲乙双方协商不能就变更本合同达成协议的;(三)甲方裁减人员的。第三十二条甲方向乙方支付的经济补偿金的计发标准不得低于北京市最低工资。
1.甲、乙双方共同遵守本合同规定的各项内容,本合同生效后,甲方即应按合同规定向乙方拨付经费。2.乙方必须按期按质完成合同规定的任务。无故中断、拖期,甲方可以停止拨款,并视情况全部或部分追回已拨款项。因不可抗拒的客观原因,须修改某些条款时,乙方应及时向甲方提出修改内容及理由的申请,经甲方同意后办理。3.甲方无故中途撤销或不履行合同时,所拨款项不得追回。并承担善后处理所发生的一切费用。4.经专业标准化技术委员会或归口单位组织审查通过,正式向中电联标准化中心送交标准“报批稿”及相应附件,经国家经济贸易委员会审批颁布,即完成合同要求。
第四条 甲方安排乙方执行________________工时制度。执行标准工时制的,乙方每日工作时间8小时,每周工作40小时。执行综合计算工时工作制的,乙方平均每天工作时间不超过8小时,平均每周工作不超过40小时。执行不定时工作制的,在保证完成甲方工作任务情况下,乙方自行安排工作和休息时间。第五条 甲方安排乙方加班,应符合法律、法规的规定。甲方安排乙方延长工作时间,应支付不低于工资的150%的工资报酬;甲方安排乙方休息日工作又不能安排补休的,应支付不低于工资200%的工资报酬。甲方安排乙方法定休假日工作的,应支付不低于工资的300%的工资报酬。
七、劳动合同变更、解除和终止⑴合同期内,乙方提出辞职的,需在30内以书面形式向主管领导提出申请,甲方以乙方的违反公司各类管理制度或者其他原因而辞退乙方,应出具公司有效行政文件并予以公示。⑵乙方因因犯罪而被判处有期徒刑,甲方可单方面解除合同。⑶乙方因严重违反甲方劳动纪律或规章制度,严重失职的,营私舞弊的,对甲方利益造成重大损害的,甲方可单方面解除合同。⑷劳动者在试用期间被证明不符合录用条件的,甲方可单方面解除合同。⑸在试用期内,乙方可单方面解除合同。⑹甲方以暴力、威胁或者非法限制人身自由的手段强迫劳动的,乙方可单方面解除合同。